Modelos matemáticos en social choice : identificación de grupos, inferencia y competencia

Este trabajo consta de tres partes, que en principio parecen ser bastante diferentes, pero tienen como hilo conductor la toma de decisiones que debe realizar una persona, un grupo de personas, un equipo, etc. Cada una de las partes de este trabajo es autocontenida. La primera parte trata sobre t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fioravanti, Federico
Otros Autores: Tohmé, Fernando
Formato: tesis doctoral
Lenguaje:Español
Publicado: 2018
Materias:
Acceso en línea:http://repositoriodigital.uns.edu.ar/handle/123456789/4248
Aporte de:
id I20-R126123456789-4248
record_format dspace
institution Universidad Nacional del Sur
institution_str I-20
repository_str R-126
collection Repositorio Institucional Universidad Nacional del Sur (UNS)
language Español
orig_language_str_mv spa
topic Matemáticas
Modelos matemáticos
Elección social
Identificación de grupos
Inferencia
Competencia
spellingShingle Matemáticas
Modelos matemáticos
Elección social
Identificación de grupos
Inferencia
Competencia
Fioravanti, Federico
Modelos matemáticos en social choice : identificación de grupos, inferencia y competencia
topic_facet Matemáticas
Modelos matemáticos
Elección social
Identificación de grupos
Inferencia
Competencia
author2 Tohmé, Fernando
author_facet Tohmé, Fernando
Fioravanti, Federico
format tesis doctoral
author Fioravanti, Federico
author_sort Fioravanti, Federico
title Modelos matemáticos en social choice : identificación de grupos, inferencia y competencia
title_short Modelos matemáticos en social choice : identificación de grupos, inferencia y competencia
title_full Modelos matemáticos en social choice : identificación de grupos, inferencia y competencia
title_fullStr Modelos matemáticos en social choice : identificación de grupos, inferencia y competencia
title_full_unstemmed Modelos matemáticos en social choice : identificación de grupos, inferencia y competencia
title_sort modelos matemáticos en social choice : identificación de grupos, inferencia y competencia
publishDate 2018
url http://repositoriodigital.uns.edu.ar/handle/123456789/4248
work_keys_str_mv AT fioravantifederico modelosmatematicosensocialchoiceidentificaciondegruposinferenciaycompetencia
bdutipo_str Repositorios
_version_ 1764820505594953729
description Este trabajo consta de tres partes, que en principio parecen ser bastante diferentes, pero tienen como hilo conductor la toma de decisiones que debe realizar una persona, un grupo de personas, un equipo, etc. Cada una de las partes de este trabajo es autocontenida. La primera parte trata sobre tres diferentes enfoques del Problema de Identificación de Grupos. Este problema surge cuando un grupo de individuos debe identificar a un subgrupo del mismo como poseedor de alguna propiedad en particular. En el primer caso, sea N un conjunto finito de agentes cada uno teniendo una opinión sobre cuál de ellos debe pertenecer a un grupo específico, que llamaremos J. Llamamos Funci´on de Identidad Colectiva (FIC) al agregador que mapea del conjunto de opiniones a un subconjunto de N. Kasher & Rubinstein (1997) caracterizan diferentes FICs de una forma axiomática. Consideramos versiones alternativas del axioma liberal que Kasher & Rubinstein incluyen en su trabajo, que son más naturales en ciertas situaciones. Esto nos permite caracterizar tres agregadores diferentes y probar que estas FICs son las únicas que verifican las correspondientes versiones del axioma. Más aún, hallamos un resultado de imposibilidad para una versión extrema del axioma liberal. Luego, analizamos el mismo problema cuando el grupo de agentes es infinito. Este caso es relevante en casos en los cuales el grupo cambia en el tiempo y/o es sujeto a la incertidumbre. Trabajamos particularmente con las FICs Liberal y Oligárquica, caracterizadas por Kasher & Rubinstein. Mostramos que en el marco infinito el resultado liberal sigue siendo válido, pero el resultado no se mantiene para el caso oligárquico, dando una caracterización de todos los agregadores que verifican los mismo axiomas que la FIC Oligárquica. Por último, volvemos a trabajar con un número finito de agentes, pero ahora las opiniones de los votantes son difusas. Cada agente i tiene una opinión sobre el resto de los miembros de la sociedad, que consiste en una función pi : N ! [0; 1], que indica el grado de membresía de un agente al grupo J. Consideramos el problema de agregar esas funciones, satisfaciendo distintos conjuntos de axiomas y caracterizando nuevos agregadores. Mientras algunos resultados son análogos al caso binario, la versión difusa nos permite dejar de lado ciertas imposibilidades probadas por Kasher & Rubinstein. La segunda parte del trabajo, presenta un proceso diferente al habitual en teoría de Social Choice. El procedimiento usual consiste en postular una serie de propiedades que se desean que un proceso de agregación verifique, y encontrar a partir de allí las características de la correspondiente función de elección social y los resultados que pueden surgir de cada posible perfil de preferencias. Nosotros invertimos esta línea de razonamiento y a partir de lo que llamamos situaciones sociales (cada una de ellas consistiendo en un perfil de opiniones y el orden social asociado), obtenemos el criterio verificado por el proceso de agregación implícito. Este proceso de inferencia, que extrae información intensional de la extensional, puede ser visto como un ejercicio en estadística cualitativa. La última parte de este trabajo, puede ser considerada dentro del área de Matemática del Deporte. Usando simples herramientas de teoría de juegos, comparamos el nivel de "ofensividad" que los equipos de rugby tienen bajo distintos sistemas de puntuación usualmente usados en algunos de los torneos más importantes del mundo. Comparamos tres sistemas de puntuación distintos. Un sistema otorga cuatro puntos al equipo ganador, dos a ambos equipos en caso de empate y ningún punto al equipo perdedor. El segundo sistema, además de otorgar los mismos puntos que el primero, da un punto extra al equipo que anota cuatro o más tries, y al equipo perdedor si es que pierde por menos de un try. El último sistema, da un punto extra si el equipo ganador anota tres tries más que el oponente, y al equipo perdedor si es que pierde por menos un try. Usando un modelo estático, mostramos que los equipos se vuelven más ofensivos cuando el punto extra se otorga por anotar cuatro o más tries. También mostramos que no otorgar punto extra hace a los equipos más ofensivos que darlo por anotar tres tries más que el rival. Finalmente, usando un modelo dinámico en un ejemplo y ciertos resultados de Masso - Neme (1996), comparamos los conjuntos de pagos factibles y de equilibrio. Obtenemos ahora que el sistema que otorga un punto extra por anotar cuatro o más tries tiene una mayor y mejor región de pagos factibles y de equilibrio que los otros dos sistemas. A diferencia del modelo estático, en este caso es preferible el sistema que otorga un punto extra por anotar tres tries más que el rival al sistema que no otorga ningún punto extra.