Codimension theorems for complete toric varieties
Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Socie...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00029939_v133_n11_p3153_Cox_oai |
Aporte de: |
id |
I28-R145-paper_00029939_v133_n11_p3153_Cox_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_00029939_v133_n11_p3153_Cox_oai2024-08-16 Cox, D. Dickenstein, A. 2005 Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society. Fil:Cox, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Proc. Am. Math. Soc. 2005;133(11):3153-3162 Toric variety Codimension theorems for complete toric varieties info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00029939_v133_n11_p3153_Cox_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Toric variety |
spellingShingle |
Toric variety Cox, D. Dickenstein, A. Codimension theorems for complete toric varieties |
topic_facet |
Toric variety |
description |
Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society. |
format |
Artículo Artículo publishedVersion |
author |
Cox, D. Dickenstein, A. |
author_facet |
Cox, D. Dickenstein, A. |
author_sort |
Cox, D. |
title |
Codimension theorems for complete toric varieties |
title_short |
Codimension theorems for complete toric varieties |
title_full |
Codimension theorems for complete toric varieties |
title_fullStr |
Codimension theorems for complete toric varieties |
title_full_unstemmed |
Codimension theorems for complete toric varieties |
title_sort |
codimension theorems for complete toric varieties |
publishDate |
2005 |
url |
http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00029939_v133_n11_p3153_Cox_oai |
work_keys_str_mv |
AT coxd codimensiontheoremsforcompletetoricvarieties AT dickensteina codimensiontheoremsforcompletetoricvarieties |
_version_ |
1809357180361506816 |