Codimension theorems for complete toric varieties

Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Socie...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cox, D., Dickenstein, A.
Formato: Artículo publishedVersion
Publicado: 2005
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00029939_v133_n11_p3153_Cox_oai
Aporte de:
id I28-R145-paper_00029939_v133_n11_p3153_Cox_oai
record_format dspace
spelling I28-R145-paper_00029939_v133_n11_p3153_Cox_oai2024-08-16 Cox, D. Dickenstein, A. 2005 Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society. Fil:Cox, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Proc. Am. Math. Soc. 2005;133(11):3153-3162 Toric variety Codimension theorems for complete toric varieties info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00029939_v133_n11_p3153_Cox_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Toric variety
spellingShingle Toric variety
Cox, D.
Dickenstein, A.
Codimension theorems for complete toric varieties
topic_facet Toric variety
description Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society.
format Artículo
Artículo
publishedVersion
author Cox, D.
Dickenstein, A.
author_facet Cox, D.
Dickenstein, A.
author_sort Cox, D.
title Codimension theorems for complete toric varieties
title_short Codimension theorems for complete toric varieties
title_full Codimension theorems for complete toric varieties
title_fullStr Codimension theorems for complete toric varieties
title_full_unstemmed Codimension theorems for complete toric varieties
title_sort codimension theorems for complete toric varieties
publishDate 2005
url http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00029939_v133_n11_p3153_Cox_oai
work_keys_str_mv AT coxd codimensiontheoremsforcompletetoricvarieties
AT dickensteina codimensiontheoremsforcompletetoricvarieties
_version_ 1809357180361506816