Complete intersections in toric ideals

We present examples that show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cattani, E., Curran, R., Dickenstein, A.
Formato: Artículo publishedVersion
Publicado: 2007
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00029939_v135_n2_p329_Cattani
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00029939_v135_n2_p329_Cattani_oai
Aporte de:
id I28-R145-paper_00029939_v135_n2_p329_Cattani_oai
record_format dspace
spelling I28-R145-paper_00029939_v135_n2_p329_Cattani_oai2024-08-16 Cattani, E. Curran, R. Dickenstein, A. 2007 We present examples that show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the study of the Horn system of partial differential equations. © 2006 American Mathematical Society. Fil:Cattani, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00029939_v135_n2_p329_Cattani info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Proc. Am. Math. Soc. 2007;135(2):329-335 Complete intersections in toric ideals info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00029939_v135_n2_p329_Cattani_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
description We present examples that show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the study of the Horn system of partial differential equations. © 2006 American Mathematical Society.
format Artículo
Artículo
publishedVersion
author Cattani, E.
Curran, R.
Dickenstein, A.
spellingShingle Cattani, E.
Curran, R.
Dickenstein, A.
Complete intersections in toric ideals
author_facet Cattani, E.
Curran, R.
Dickenstein, A.
author_sort Cattani, E.
title Complete intersections in toric ideals
title_short Complete intersections in toric ideals
title_full Complete intersections in toric ideals
title_fullStr Complete intersections in toric ideals
title_full_unstemmed Complete intersections in toric ideals
title_sort complete intersections in toric ideals
publishDate 2007
url http://hdl.handle.net/20.500.12110/paper_00029939_v135_n2_p329_Cattani
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00029939_v135_n2_p329_Cattani_oai
work_keys_str_mv AT cattanie completeintersectionsintoricideals
AT curranr completeintersectionsintoricideals
AT dickensteina completeintersectionsintoricideals
_version_ 1809357038440939520