Complete intersections in toric ideals
We present examples that show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2007
|
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v135_n2_p329_Cattani https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00029939_v135_n2_p329_Cattani_oai |
Aporte de: |
id |
I28-R145-paper_00029939_v135_n2_p329_Cattani_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_00029939_v135_n2_p329_Cattani_oai2024-08-16 Cattani, E. Curran, R. Dickenstein, A. 2007 We present examples that show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the study of the Horn system of partial differential equations. © 2006 American Mathematical Society. Fil:Cattani, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00029939_v135_n2_p329_Cattani info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Proc. Am. Math. Soc. 2007;135(2):329-335 Complete intersections in toric ideals info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00029939_v135_n2_p329_Cattani_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
description |
We present examples that show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the study of the Horn system of partial differential equations. © 2006 American Mathematical Society. |
format |
Artículo Artículo publishedVersion |
author |
Cattani, E. Curran, R. Dickenstein, A. |
spellingShingle |
Cattani, E. Curran, R. Dickenstein, A. Complete intersections in toric ideals |
author_facet |
Cattani, E. Curran, R. Dickenstein, A. |
author_sort |
Cattani, E. |
title |
Complete intersections in toric ideals |
title_short |
Complete intersections in toric ideals |
title_full |
Complete intersections in toric ideals |
title_fullStr |
Complete intersections in toric ideals |
title_full_unstemmed |
Complete intersections in toric ideals |
title_sort |
complete intersections in toric ideals |
publishDate |
2007 |
url |
http://hdl.handle.net/20.500.12110/paper_00029939_v135_n2_p329_Cattani https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00029939_v135_n2_p329_Cattani_oai |
work_keys_str_mv |
AT cattanie completeintersectionsintoricideals AT curranr completeintersectionsintoricideals AT dickensteina completeintersectionsintoricideals |
_version_ |
1809357038440939520 |