Singularities of logarithmic foliations

A logarithmic 1-form on ℂℙn can be written as ω = (Π0m Fj) ∑0m λi dFi/Fi = λ0F̂ 0dF0 +⋯+ λmF̂ mdFm with F̂i = (Π0 m Fj)/Fi for some homogeneous polynomials Fi of degree di and constants λi ∈ ℂ* such that ∑ λidi = 0. For general Fi, λi, the singularities of ω consist of a schematic union of the codim...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cukierman, F., Soares, M.G., Vainsencher, I.
Formato: Artículo publishedVersion
Publicado: 2006
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0010437X_v142_n1_p131_Cukierman
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0010437X_v142_n1_p131_Cukierman_oai
Aporte de:
id I28-R145-paper_0010437X_v142_n1_p131_Cukierman_oai
record_format dspace
spelling I28-R145-paper_0010437X_v142_n1_p131_Cukierman_oai2024-08-16 Cukierman, F. Soares, M.G. Vainsencher, I. 2006 A logarithmic 1-form on ℂℙn can be written as ω = (Π0m Fj) ∑0m λi dFi/Fi = λ0F̂ 0dF0 +⋯+ λmF̂ mdFm with F̂i = (Π0 m Fj)/Fi for some homogeneous polynomials Fi of degree di and constants λi ∈ ℂ* such that ∑ λidi = 0. For general Fi, λi, the singularities of ω consist of a schematic union of the codimension 2 subvarieties Fi = Fj = 0 together with, possibly, finitely many isolated points. This is the case when all Fi are smooth and in general position. In this situation, we give a formula which prescribes the number of isolated singularities. © Foundation Compositio Mathematica 2006. Fil:Cukierman, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0010437X_v142_n1_p131_Cukierman info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Compos. Math. 2006;142(1):131-142 Characteristic classes Excess intersection Holomorphic foliations Singularities of logarithmic foliations info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0010437X_v142_n1_p131_Cukierman_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Characteristic classes
Excess intersection
Holomorphic foliations
spellingShingle Characteristic classes
Excess intersection
Holomorphic foliations
Cukierman, F.
Soares, M.G.
Vainsencher, I.
Singularities of logarithmic foliations
topic_facet Characteristic classes
Excess intersection
Holomorphic foliations
description A logarithmic 1-form on ℂℙn can be written as ω = (Π0m Fj) ∑0m λi dFi/Fi = λ0F̂ 0dF0 +⋯+ λmF̂ mdFm with F̂i = (Π0 m Fj)/Fi for some homogeneous polynomials Fi of degree di and constants λi ∈ ℂ* such that ∑ λidi = 0. For general Fi, λi, the singularities of ω consist of a schematic union of the codimension 2 subvarieties Fi = Fj = 0 together with, possibly, finitely many isolated points. This is the case when all Fi are smooth and in general position. In this situation, we give a formula which prescribes the number of isolated singularities. © Foundation Compositio Mathematica 2006.
format Artículo
Artículo
publishedVersion
author Cukierman, F.
Soares, M.G.
Vainsencher, I.
author_facet Cukierman, F.
Soares, M.G.
Vainsencher, I.
author_sort Cukierman, F.
title Singularities of logarithmic foliations
title_short Singularities of logarithmic foliations
title_full Singularities of logarithmic foliations
title_fullStr Singularities of logarithmic foliations
title_full_unstemmed Singularities of logarithmic foliations
title_sort singularities of logarithmic foliations
publishDate 2006
url http://hdl.handle.net/20.500.12110/paper_0010437X_v142_n1_p131_Cukierman
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0010437X_v142_n1_p131_Cukierman_oai
work_keys_str_mv AT cukiermanf singularitiesoflogarithmicfoliations
AT soaresmg singularitiesoflogarithmicfoliations
AT vainsencheri singularitiesoflogarithmicfoliations
_version_ 1809356770506702848