Hochschild (Co)homology of differential operators rings
We show that the Hochschild homology of a differential operator k-algebra E = A#fU(g) is the homology of a deformation of the Chevalley-Eilenberg complex of g with coefficients in (M ⊗ Ā* b*). Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Ros...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2001
|
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00218693_v243_n2_p596_Guccione https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v243_n2_p596_Guccione_oai |
Aporte de: |
id |
I28-R145-paper_00218693_v243_n2_p596_Guccione_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_00218693_v243_n2_p596_Guccione_oai2024-08-16 Guccione, J.A. Guccione, J.J. 2001 We show that the Hochschild homology of a differential operator k-algebra E = A#fU(g) is the homology of a deformation of the Chevalley-Eilenberg complex of g with coefficients in (M ⊗ Ā* b*). Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Rosenberg theorem for these algebras. When A = k our complex reduces to the one obtained by C. Kassel (1988, Invent. Math. 91, 221-251) for the homology of filtrated algebras whose associated graded algebras are symmetric algebras. In the last section we give similar results for the cohomology. © 2001 Academic Press. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00218693_v243_n2_p596_Guccione info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Algebra 2001;243(2):596-614 Hochschild (Co)homology of differential operators rings info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v243_n2_p596_Guccione_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
description |
We show that the Hochschild homology of a differential operator k-algebra E = A#fU(g) is the homology of a deformation of the Chevalley-Eilenberg complex of g with coefficients in (M ⊗ Ā* b*). Moreover, when A is smooth and k is a characteristic zero field, we obtain a type of Hochschild-Kostant-Rosenberg theorem for these algebras. When A = k our complex reduces to the one obtained by C. Kassel (1988, Invent. Math. 91, 221-251) for the homology of filtrated algebras whose associated graded algebras are symmetric algebras. In the last section we give similar results for the cohomology. © 2001 Academic Press. |
format |
Artículo Artículo publishedVersion |
author |
Guccione, J.A. Guccione, J.J. |
spellingShingle |
Guccione, J.A. Guccione, J.J. Hochschild (Co)homology of differential operators rings |
author_facet |
Guccione, J.A. Guccione, J.J. |
author_sort |
Guccione, J.A. |
title |
Hochschild (Co)homology of differential operators rings |
title_short |
Hochschild (Co)homology of differential operators rings |
title_full |
Hochschild (Co)homology of differential operators rings |
title_fullStr |
Hochschild (Co)homology of differential operators rings |
title_full_unstemmed |
Hochschild (Co)homology of differential operators rings |
title_sort |
hochschild (co)homology of differential operators rings |
publishDate |
2001 |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v243_n2_p596_Guccione https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v243_n2_p596_Guccione_oai |
work_keys_str_mv |
AT guccioneja hochschildcohomologyofdifferentialoperatorsrings AT guccionejj hochschildcohomologyofdifferentialoperatorsrings |
_version_ |
1809356776506654720 |