Trivial central extensions of Lie bialgebras

From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Farinati, M.A., Jancsa, A.P.
Formato: Artículo publishedVersion
Publicado: 2013
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00218693_v390_n_p56_Farinati
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v390_n_p56_Farinati_oai
Aporte de:
id I28-R145-paper_00218693_v390_n_p56_Farinati_oai
record_format dspace
spelling I28-R145-paper_00218693_v390_n_p56_Farinati_oai2024-08-16 Farinati, M.A. Jancsa, A.P. 2013 From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc. Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00218693_v390_n_p56_Farinati info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Algebra 2013;390:56-76 Derivations Extensions Lie bialgebras Trivial central extensions of Lie bialgebras info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v390_n_p56_Farinati_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Derivations
Extensions
Lie bialgebras
spellingShingle Derivations
Extensions
Lie bialgebras
Farinati, M.A.
Jancsa, A.P.
Trivial central extensions of Lie bialgebras
topic_facet Derivations
Extensions
Lie bialgebras
description From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc.
format Artículo
Artículo
publishedVersion
author Farinati, M.A.
Jancsa, A.P.
author_facet Farinati, M.A.
Jancsa, A.P.
author_sort Farinati, M.A.
title Trivial central extensions of Lie bialgebras
title_short Trivial central extensions of Lie bialgebras
title_full Trivial central extensions of Lie bialgebras
title_fullStr Trivial central extensions of Lie bialgebras
title_full_unstemmed Trivial central extensions of Lie bialgebras
title_sort trivial central extensions of lie bialgebras
publishDate 2013
url http://hdl.handle.net/20.500.12110/paper_00218693_v390_n_p56_Farinati
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v390_n_p56_Farinati_oai
work_keys_str_mv AT farinatima trivialcentralextensionsofliebialgebras
AT jancsaap trivialcentralextensionsofliebialgebras
_version_ 1809356868345135104