Trivial central extensions of Lie bialgebras
From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00218693_v390_n_p56_Farinati https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v390_n_p56_Farinati_oai |
Aporte de: |
id |
I28-R145-paper_00218693_v390_n_p56_Farinati_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_00218693_v390_n_p56_Farinati_oai2024-08-16 Farinati, M.A. Jancsa, A.P. 2013 From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc. Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00218693_v390_n_p56_Farinati info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Algebra 2013;390:56-76 Derivations Extensions Lie bialgebras Trivial central extensions of Lie bialgebras info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v390_n_p56_Farinati_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Derivations Extensions Lie bialgebras |
spellingShingle |
Derivations Extensions Lie bialgebras Farinati, M.A. Jancsa, A.P. Trivial central extensions of Lie bialgebras |
topic_facet |
Derivations Extensions Lie bialgebras |
description |
From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc. |
format |
Artículo Artículo publishedVersion |
author |
Farinati, M.A. Jancsa, A.P. |
author_facet |
Farinati, M.A. Jancsa, A.P. |
author_sort |
Farinati, M.A. |
title |
Trivial central extensions of Lie bialgebras |
title_short |
Trivial central extensions of Lie bialgebras |
title_full |
Trivial central extensions of Lie bialgebras |
title_fullStr |
Trivial central extensions of Lie bialgebras |
title_full_unstemmed |
Trivial central extensions of Lie bialgebras |
title_sort |
trivial central extensions of lie bialgebras |
publishDate |
2013 |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v390_n_p56_Farinati https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00218693_v390_n_p56_Farinati_oai |
work_keys_str_mv |
AT farinatima trivialcentralextensionsofliebialgebras AT jancsaap trivialcentralextensionsofliebialgebras |
_version_ |
1809356868345135104 |