Estimates for eigenvalues of quasilinear elliptic systems

In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a reg...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: De Nápoli, P.L., Pinasco, J.P.
Formato: Artículo publishedVersion
Publicado: 2006
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p102_DeNapoli
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00220396_v227_n1_p102_DeNapoli_oai
Aporte de:
id I28-R145-paper_00220396_v227_n1_p102_DeNapoli_oai
record_format dspace
spelling I28-R145-paper_00220396_v227_n1_p102_DeNapoli_oai2024-08-16 De Nápoli, P.L. Pinasco, J.P. 2006 In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable generalization of Lyapunov's inequality for systems of ordinary differential equations. We also obtain a family of curves bounding by above the kth variational eigencurve. © 2006 Elsevier Inc. All rights reserved. Fil:De Nápoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p102_DeNapoli info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Differ. Equ. 2006;227(1):102-115 Eigenvalue bounds Elliptic system Lyapunov inequality p-Laplacian Estimates for eigenvalues of quasilinear elliptic systems info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00220396_v227_n1_p102_DeNapoli_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Eigenvalue bounds
Elliptic system
Lyapunov inequality
p-Laplacian
spellingShingle Eigenvalue bounds
Elliptic system
Lyapunov inequality
p-Laplacian
De Nápoli, P.L.
Pinasco, J.P.
Estimates for eigenvalues of quasilinear elliptic systems
topic_facet Eigenvalue bounds
Elliptic system
Lyapunov inequality
p-Laplacian
description In this paper we introduce the generalized eigenvalues of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many continuous eigencurves, which are obtained by variational methods. For the one-dimensional problem, we obtain an hyperbolic type function defining a region which contains all the generalized eigenvalues (variational or not), and the proof is based on a suitable generalization of Lyapunov's inequality for systems of ordinary differential equations. We also obtain a family of curves bounding by above the kth variational eigencurve. © 2006 Elsevier Inc. All rights reserved.
format Artículo
Artículo
publishedVersion
author De Nápoli, P.L.
Pinasco, J.P.
author_facet De Nápoli, P.L.
Pinasco, J.P.
author_sort De Nápoli, P.L.
title Estimates for eigenvalues of quasilinear elliptic systems
title_short Estimates for eigenvalues of quasilinear elliptic systems
title_full Estimates for eigenvalues of quasilinear elliptic systems
title_fullStr Estimates for eigenvalues of quasilinear elliptic systems
title_full_unstemmed Estimates for eigenvalues of quasilinear elliptic systems
title_sort estimates for eigenvalues of quasilinear elliptic systems
publishDate 2006
url http://hdl.handle.net/20.500.12110/paper_00220396_v227_n1_p102_DeNapoli
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00220396_v227_n1_p102_DeNapoli_oai
work_keys_str_mv AT denapolipl estimatesforeigenvaluesofquasilinearellipticsystems
AT pinascojp estimatesforeigenvaluesofquasilinearellipticsystems
_version_ 1809356877943799808