Blow-up with logarithmic nonlinearities
We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition,{Mathematical expression} with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in finite tim...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2007
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00220396_v240_n1_p196_Ferreira https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00220396_v240_n1_p196_Ferreira_oai |
Aporte de: |
id |
I28-R145-paper_00220396_v240_n1_p196_Ferreira_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_00220396_v240_n1_p196_Ferreira_oai2024-08-16 Ferreira, R. de Pablo, A. Rossi, J.D. 2007 We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition,{Mathematical expression} with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behaviour close to the blow-up time, showing that a phenomenon of asymptotic simplification takes place. We finally study the appearance of extinction in finite time. © 2007 Elsevier Inc. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_00220396_v240_n1_p196_Ferreira info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Differ. Equ. 2007;240(1):196-215 Asymptotic behaviour Blow-up Nonlinear boundary conditions Blow-up with logarithmic nonlinearities info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00220396_v240_n1_p196_Ferreira_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Asymptotic behaviour Blow-up Nonlinear boundary conditions |
spellingShingle |
Asymptotic behaviour Blow-up Nonlinear boundary conditions Ferreira, R. de Pablo, A. Rossi, J.D. Blow-up with logarithmic nonlinearities |
topic_facet |
Asymptotic behaviour Blow-up Nonlinear boundary conditions |
description |
We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition,{Mathematical expression} with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behaviour close to the blow-up time, showing that a phenomenon of asymptotic simplification takes place. We finally study the appearance of extinction in finite time. © 2007 Elsevier Inc. All rights reserved. |
format |
Artículo Artículo publishedVersion |
author |
Ferreira, R. de Pablo, A. Rossi, J.D. |
author_facet |
Ferreira, R. de Pablo, A. Rossi, J.D. |
author_sort |
Ferreira, R. |
title |
Blow-up with logarithmic nonlinearities |
title_short |
Blow-up with logarithmic nonlinearities |
title_full |
Blow-up with logarithmic nonlinearities |
title_fullStr |
Blow-up with logarithmic nonlinearities |
title_full_unstemmed |
Blow-up with logarithmic nonlinearities |
title_sort |
blow-up with logarithmic nonlinearities |
publishDate |
2007 |
url |
http://hdl.handle.net/20.500.12110/paper_00220396_v240_n1_p196_Ferreira https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_00220396_v240_n1_p196_Ferreira_oai |
work_keys_str_mv |
AT ferreirar blowupwithlogarithmicnonlinearities AT depabloa blowupwithlogarithmicnonlinearities AT rossijd blowupwithlogarithmicnonlinearities |
_version_ |
1809356973716537344 |