Dirichlet and periodic-type boundary value problems for Painlevé II
It is established that, under certain conditions, the Dirichlet problem on a bounded interval for the Painlevé II equation is uniquely solvable and solutions are constructed in an iterative manner. Moreover, conditions for the existence of periodic solutions are set down. © 2002 Elsevier Science.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2002
|
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v265_n1_p1_Mariani https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v265_n1_p1_Mariani_oai |
Aporte de: |
id |
I28-R145-paper_0022247X_v265_n1_p1_Mariani_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_0022247X_v265_n1_p1_Mariani_oai2024-08-16 Mariani, M.C. Amster, P. Rogers, C. 2002 It is established that, under certain conditions, the Dirichlet problem on a bounded interval for the Painlevé II equation is uniquely solvable and solutions are constructed in an iterative manner. Moreover, conditions for the existence of periodic solutions are set down. © 2002 Elsevier Science. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v265_n1_p1_Mariani info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2002;265(1):1-11 Dirichlet and periodic-type boundary value problems for Painlevé II info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v265_n1_p1_Mariani_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
description |
It is established that, under certain conditions, the Dirichlet problem on a bounded interval for the Painlevé II equation is uniquely solvable and solutions are constructed in an iterative manner. Moreover, conditions for the existence of periodic solutions are set down. © 2002 Elsevier Science. |
format |
Artículo Artículo publishedVersion |
author |
Mariani, M.C. Amster, P. Rogers, C. |
spellingShingle |
Mariani, M.C. Amster, P. Rogers, C. Dirichlet and periodic-type boundary value problems for Painlevé II |
author_facet |
Mariani, M.C. Amster, P. Rogers, C. |
author_sort |
Mariani, M.C. |
title |
Dirichlet and periodic-type boundary value problems for Painlevé II |
title_short |
Dirichlet and periodic-type boundary value problems for Painlevé II |
title_full |
Dirichlet and periodic-type boundary value problems for Painlevé II |
title_fullStr |
Dirichlet and periodic-type boundary value problems for Painlevé II |
title_full_unstemmed |
Dirichlet and periodic-type boundary value problems for Painlevé II |
title_sort |
dirichlet and periodic-type boundary value problems for painlevé ii |
publishDate |
2002 |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v265_n1_p1_Mariani https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v265_n1_p1_Mariani_oai |
work_keys_str_mv |
AT marianimc dirichletandperiodictypeboundaryvalueproblemsforpainleveii AT amsterp dirichletandperiodictypeboundaryvalueproblemsforpainleveii AT rogersc dirichletandperiodictypeboundaryvalueproblemsforpainleveii |
_version_ |
1809357071788802048 |