Extension of vector-valued integral polynomials

We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral po...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carando, D., Lassalle, S.
Formato: Artículo publishedVersion
Publicado: 2005
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v307_n1_p77_Carando_oai
Aporte de:
id I28-R145-paper_0022247X_v307_n1_p77_Carando_oai
record_format dspace
spelling I28-R145-paper_0022247X_v307_n1_p77_Carando_oai2024-08-16 Carando, D. Lassalle, S. 2005 We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2005;307(1):77-85 Extendibility Integral polynomials Extension of vector-valued integral polynomials info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v307_n1_p77_Carando_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Extendibility
Integral polynomials
spellingShingle Extendibility
Integral polynomials
Carando, D.
Lassalle, S.
Extension of vector-valued integral polynomials
topic_facet Extendibility
Integral polynomials
description We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved.
format Artículo
Artículo
publishedVersion
author Carando, D.
Lassalle, S.
author_facet Carando, D.
Lassalle, S.
author_sort Carando, D.
title Extension of vector-valued integral polynomials
title_short Extension of vector-valued integral polynomials
title_full Extension of vector-valued integral polynomials
title_fullStr Extension of vector-valued integral polynomials
title_full_unstemmed Extension of vector-valued integral polynomials
title_sort extension of vector-valued integral polynomials
publishDate 2005
url http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v307_n1_p77_Carando_oai
work_keys_str_mv AT carandod extensionofvectorvaluedintegralpolynomials
AT lassalles extensionofvectorvaluedintegralpolynomials
_version_ 1809356788610367488