Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem....
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v310_n2_p397_Acosta https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v310_n2_p397_Acosta_oai |
Aporte de: |
id |
I28-R145-paper_0022247X_v310_n2_p397_Acosta_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_0022247X_v310_n2_p397_Acosta_oai2024-08-16 Acosta, G. Armentano, M.G. Durán, R.G. Lombardi, A.L. 2005 In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H1 (Ω) does not apply, in fact the restriction of H1 (Ω) functions is not necessarily in L2 (∂Ω). So, we introduce a trace theorem by using weighted Sobolev norms in Ω. Under appropriate assumptions we prove that the solution of our problem is in H2 (Ω) and we obtain an a priori estimate for the second derivatives of the solution. © 2005 Elsevier Inc. All rights reserved. Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lombardi, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v310_n2_p397_Acosta info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2005;310(2):397-411 Cuspidal domains Neumann problem Regularity Traces Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v310_n2_p397_Acosta_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Cuspidal domains Neumann problem Regularity Traces |
spellingShingle |
Cuspidal domains Neumann problem Regularity Traces Acosta, G. Armentano, M.G. Durán, R.G. Lombardi, A.L. Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp |
topic_facet |
Cuspidal domains Neumann problem Regularity Traces |
description |
In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H1 (Ω) does not apply, in fact the restriction of H1 (Ω) functions is not necessarily in L2 (∂Ω). So, we introduce a trace theorem by using weighted Sobolev norms in Ω. Under appropriate assumptions we prove that the solution of our problem is in H2 (Ω) and we obtain an a priori estimate for the second derivatives of the solution. © 2005 Elsevier Inc. All rights reserved. |
format |
Artículo Artículo publishedVersion |
author |
Acosta, G. Armentano, M.G. Durán, R.G. Lombardi, A.L. |
author_facet |
Acosta, G. Armentano, M.G. Durán, R.G. Lombardi, A.L. |
author_sort |
Acosta, G. |
title |
Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp |
title_short |
Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp |
title_full |
Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp |
title_fullStr |
Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp |
title_full_unstemmed |
Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp |
title_sort |
nonhomogeneous neumann problem for the poisson equation in domains with an external cusp |
publishDate |
2005 |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v310_n2_p397_Acosta https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v310_n2_p397_Acosta_oai |
work_keys_str_mv |
AT acostag nonhomogeneousneumannproblemforthepoissonequationindomainswithanexternalcusp AT armentanomg nonhomogeneousneumannproblemforthepoissonequationindomainswithanexternalcusp AT duranrg nonhomogeneousneumannproblemforthepoissonequationindomainswithanexternalcusp AT lombardial nonhomogeneousneumannproblemforthepoissonequationindomainswithanexternalcusp |
_version_ |
1809356881377886208 |