Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp

In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Acosta, G., Armentano, M.G., Durán, R.G., Lombardi, A.L.
Formato: Artículo publishedVersion
Publicado: 2005
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v310_n2_p397_Acosta
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v310_n2_p397_Acosta_oai
Aporte de:
id I28-R145-paper_0022247X_v310_n2_p397_Acosta_oai
record_format dspace
spelling I28-R145-paper_0022247X_v310_n2_p397_Acosta_oai2024-08-16 Acosta, G. Armentano, M.G. Durán, R.G. Lombardi, A.L. 2005 In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H1 (Ω) does not apply, in fact the restriction of H1 (Ω) functions is not necessarily in L2 (∂Ω). So, we introduce a trace theorem by using weighted Sobolev norms in Ω. Under appropriate assumptions we prove that the solution of our problem is in H2 (Ω) and we obtain an a priori estimate for the second derivatives of the solution. © 2005 Elsevier Inc. All rights reserved. Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lombardi, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v310_n2_p397_Acosta info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2005;310(2):397-411 Cuspidal domains Neumann problem Regularity Traces Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v310_n2_p397_Acosta_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Cuspidal domains
Neumann problem
Regularity
Traces
spellingShingle Cuspidal domains
Neumann problem
Regularity
Traces
Acosta, G.
Armentano, M.G.
Durán, R.G.
Lombardi, A.L.
Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
topic_facet Cuspidal domains
Neumann problem
Regularity
Traces
description In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H1 (Ω) does not apply, in fact the restriction of H1 (Ω) functions is not necessarily in L2 (∂Ω). So, we introduce a trace theorem by using weighted Sobolev norms in Ω. Under appropriate assumptions we prove that the solution of our problem is in H2 (Ω) and we obtain an a priori estimate for the second derivatives of the solution. © 2005 Elsevier Inc. All rights reserved.
format Artículo
Artículo
publishedVersion
author Acosta, G.
Armentano, M.G.
Durán, R.G.
Lombardi, A.L.
author_facet Acosta, G.
Armentano, M.G.
Durán, R.G.
Lombardi, A.L.
author_sort Acosta, G.
title Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
title_short Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
title_full Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
title_fullStr Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
title_full_unstemmed Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
title_sort nonhomogeneous neumann problem for the poisson equation in domains with an external cusp
publishDate 2005
url http://hdl.handle.net/20.500.12110/paper_0022247X_v310_n2_p397_Acosta
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v310_n2_p397_Acosta_oai
work_keys_str_mv AT acostag nonhomogeneousneumannproblemforthepoissonequationindomainswithanexternalcusp
AT armentanomg nonhomogeneousneumannproblemforthepoissonequationindomainswithanexternalcusp
AT duranrg nonhomogeneousneumannproblemforthepoissonequationindomainswithanexternalcusp
AT lombardial nonhomogeneousneumannproblemforthepoissonequationindomainswithanexternalcusp
_version_ 1809356881377886208