Refined asymptotics for eigenvalues on domains of infinite measure
In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting fun...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v371_n1_p41_Bonder_oai |
Aporte de: |
id |
I28-R145-paper_0022247X_v371_n1_p41_Bonder_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_0022247X_v371_n1_p41_Bonder_oai2024-08-16 Bonder, J.F. Pinasco, J.P. Salort, A.M. 2010 In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting function of the Laplace operator on unbounded two-dimensional domains. © 2010 Elsevier Inc. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2010;371(1):41-56 Eigenvalues Lattice points P-Laplace operator Refined asymptotics for eigenvalues on domains of infinite measure info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v371_n1_p41_Bonder_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Eigenvalues Lattice points P-Laplace operator |
spellingShingle |
Eigenvalues Lattice points P-Laplace operator Bonder, J.F. Pinasco, J.P. Salort, A.M. Refined asymptotics for eigenvalues on domains of infinite measure |
topic_facet |
Eigenvalues Lattice points P-Laplace operator |
description |
In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting function of the Laplace operator on unbounded two-dimensional domains. © 2010 Elsevier Inc. |
format |
Artículo Artículo publishedVersion |
author |
Bonder, J.F. Pinasco, J.P. Salort, A.M. |
author_facet |
Bonder, J.F. Pinasco, J.P. Salort, A.M. |
author_sort |
Bonder, J.F. |
title |
Refined asymptotics for eigenvalues on domains of infinite measure |
title_short |
Refined asymptotics for eigenvalues on domains of infinite measure |
title_full |
Refined asymptotics for eigenvalues on domains of infinite measure |
title_fullStr |
Refined asymptotics for eigenvalues on domains of infinite measure |
title_full_unstemmed |
Refined asymptotics for eigenvalues on domains of infinite measure |
title_sort |
refined asymptotics for eigenvalues on domains of infinite measure |
publishDate |
2010 |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v371_n1_p41_Bonder_oai |
work_keys_str_mv |
AT bonderjf refinedasymptoticsforeigenvaluesondomainsofinfinitemeasure AT pinascojp refinedasymptoticsforeigenvaluesondomainsofinfinitemeasure AT salortam refinedasymptoticsforeigenvaluesondomainsofinfinitemeasure |
_version_ |
1809356789650554880 |