Refined asymptotics for eigenvalues on domains of infinite measure

In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting fun...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bonder, J.F., Pinasco, J.P., Salort, A.M.
Formato: Artículo publishedVersion
Publicado: 2010
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v371_n1_p41_Bonder_oai
Aporte de:
id I28-R145-paper_0022247X_v371_n1_p41_Bonder_oai
record_format dspace
spelling I28-R145-paper_0022247X_v371_n1_p41_Bonder_oai2024-08-16 Bonder, J.F. Pinasco, J.P. Salort, A.M. 2010 In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting function of the Laplace operator on unbounded two-dimensional domains. © 2010 Elsevier Inc. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Math. Anal. Appl. 2010;371(1):41-56 Eigenvalues Lattice points P-Laplace operator Refined asymptotics for eigenvalues on domains of infinite measure info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v371_n1_p41_Bonder_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Eigenvalues
Lattice points
P-Laplace operator
spellingShingle Eigenvalues
Lattice points
P-Laplace operator
Bonder, J.F.
Pinasco, J.P.
Salort, A.M.
Refined asymptotics for eigenvalues on domains of infinite measure
topic_facet Eigenvalues
Lattice points
P-Laplace operator
description In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting function of the Laplace operator on unbounded two-dimensional domains. © 2010 Elsevier Inc.
format Artículo
Artículo
publishedVersion
author Bonder, J.F.
Pinasco, J.P.
Salort, A.M.
author_facet Bonder, J.F.
Pinasco, J.P.
Salort, A.M.
author_sort Bonder, J.F.
title Refined asymptotics for eigenvalues on domains of infinite measure
title_short Refined asymptotics for eigenvalues on domains of infinite measure
title_full Refined asymptotics for eigenvalues on domains of infinite measure
title_fullStr Refined asymptotics for eigenvalues on domains of infinite measure
title_full_unstemmed Refined asymptotics for eigenvalues on domains of infinite measure
title_sort refined asymptotics for eigenvalues on domains of infinite measure
publishDate 2010
url http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v371_n1_p41_Bonder_oai
work_keys_str_mv AT bonderjf refinedasymptoticsforeigenvaluesondomainsofinfinitemeasure
AT pinascojp refinedasymptoticsforeigenvaluesondomainsofinfinitemeasure
AT salortam refinedasymptoticsforeigenvaluesondomainsofinfinitemeasure
_version_ 1809356789650554880