Refined asymptotics for eigenvalues on domains of infinite measure

In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting fun...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bonder, J.F., Pinasco, J.P., Salort, A.M.
Formato: Artículo publishedVersion
Publicado: 2010
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022247X_v371_n1_p41_Bonder_oai
Aporte de:
Descripción
Sumario:In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting function of the Laplace operator on unbounded two-dimensional domains. © 2010 Elsevier Inc.