A formula for the central value of certain Hecke L-functions

Let N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pacetti, A.
Formato: Artículo publishedVersion
Publicado: 2005
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022314X_v113_n2_p339_Pacetti
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022314X_v113_n2_p339_Pacetti_oai
Aporte de:
id I28-R145-paper_0022314X_v113_n2_p339_Pacetti_oai
record_format dspace
spelling I28-R145-paper_0022314X_v113_n2_p339_Pacetti_oai2024-08-16 Pacetti, A. 2005 Let N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a CM elliptic curve A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type formula for L(ψD, s) of the form L(ψD, 1) = Ω∑[A],Ir (D, [A], I) m[A],I ([D]) where the sum is over class ideal representatives I of a maximal order in the quaternion algebra ramified at N and infinity and [A] are class group representatives of K. An application of this formula for the case N = -7 will allow us to prove the non-vanishing of a family of L-series of level 7 D over K. © 2005 Elsevier Inc. All rights reserved. Fil:Pacetti, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022314X_v113_n2_p339_Pacetti info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Number Theory 2005;113(2):339-379 Hecke L-functions A formula for the central value of certain Hecke L-functions info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022314X_v113_n2_p339_Pacetti_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Hecke L-functions
spellingShingle Hecke L-functions
Pacetti, A.
A formula for the central value of certain Hecke L-functions
topic_facet Hecke L-functions
description Let N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a CM elliptic curve A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type formula for L(ψD, s) of the form L(ψD, 1) = Ω∑[A],Ir (D, [A], I) m[A],I ([D]) where the sum is over class ideal representatives I of a maximal order in the quaternion algebra ramified at N and infinity and [A] are class group representatives of K. An application of this formula for the case N = -7 will allow us to prove the non-vanishing of a family of L-series of level 7 D over K. © 2005 Elsevier Inc. All rights reserved.
format Artículo
Artículo
publishedVersion
author Pacetti, A.
author_facet Pacetti, A.
author_sort Pacetti, A.
title A formula for the central value of certain Hecke L-functions
title_short A formula for the central value of certain Hecke L-functions
title_full A formula for the central value of certain Hecke L-functions
title_fullStr A formula for the central value of certain Hecke L-functions
title_full_unstemmed A formula for the central value of certain Hecke L-functions
title_sort formula for the central value of certain hecke l-functions
publishDate 2005
url http://hdl.handle.net/20.500.12110/paper_0022314X_v113_n2_p339_Pacetti
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022314X_v113_n2_p339_Pacetti_oai
work_keys_str_mv AT pacettia aformulaforthecentralvalueofcertainheckelfunctions
AT pacettia formulaforthecentralvalueofcertainheckelfunctions
_version_ 1809356884049657856