A formula for the central value of certain Hecke L-functions
Let N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a...
Guardado en:
Autor principal: | |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022314X_v113_n2_p339_Pacetti https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022314X_v113_n2_p339_Pacetti_oai |
Aporte de: |
id |
I28-R145-paper_0022314X_v113_n2_p339_Pacetti_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_0022314X_v113_n2_p339_Pacetti_oai2024-08-16 Pacetti, A. 2005 Let N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a CM elliptic curve A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type formula for L(ψD, s) of the form L(ψD, 1) = Ω∑[A],Ir (D, [A], I) m[A],I ([D]) where the sum is over class ideal representatives I of a maximal order in the quaternion algebra ramified at N and infinity and [A] are class group representatives of K. An application of this formula for the case N = -7 will allow us to prove the non-vanishing of a family of L-series of level 7 D over K. © 2005 Elsevier Inc. All rights reserved. Fil:Pacetti, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_0022314X_v113_n2_p339_Pacetti info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Number Theory 2005;113(2):339-379 Hecke L-functions A formula for the central value of certain Hecke L-functions info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022314X_v113_n2_p339_Pacetti_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Hecke L-functions |
spellingShingle |
Hecke L-functions Pacetti, A. A formula for the central value of certain Hecke L-functions |
topic_facet |
Hecke L-functions |
description |
Let N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a CM elliptic curve A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type formula for L(ψD, s) of the form L(ψD, 1) = Ω∑[A],Ir (D, [A], I) m[A],I ([D]) where the sum is over class ideal representatives I of a maximal order in the quaternion algebra ramified at N and infinity and [A] are class group representatives of K. An application of this formula for the case N = -7 will allow us to prove the non-vanishing of a family of L-series of level 7 D over K. © 2005 Elsevier Inc. All rights reserved. |
format |
Artículo Artículo publishedVersion |
author |
Pacetti, A. |
author_facet |
Pacetti, A. |
author_sort |
Pacetti, A. |
title |
A formula for the central value of certain Hecke L-functions |
title_short |
A formula for the central value of certain Hecke L-functions |
title_full |
A formula for the central value of certain Hecke L-functions |
title_fullStr |
A formula for the central value of certain Hecke L-functions |
title_full_unstemmed |
A formula for the central value of certain Hecke L-functions |
title_sort |
formula for the central value of certain hecke l-functions |
publishDate |
2005 |
url |
http://hdl.handle.net/20.500.12110/paper_0022314X_v113_n2_p339_Pacetti https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_0022314X_v113_n2_p339_Pacetti_oai |
work_keys_str_mv |
AT pacettia aformulaforthecentralvalueofcertainheckelfunctions AT pacettia formulaforthecentralvalueofcertainheckelfunctions |
_version_ |
1809356884049657856 |