The number of roots of a lacunary bivariate polynomial on a line

We prove that a polynomial f ∈ R [x, y] with t non-zero terms, restricted to a real line y = a x + b, either has at most 6 t - 4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y - a x - b ∈ K &#...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Avendaño, M.
Formato: Artículo publishedVersion
Publicado: 2009
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1280_Avendano
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v44_n9_p1280_Avendano_oai
Aporte de:
id I28-R145-paper_07477171_v44_n9_p1280_Avendano_oai
record_format dspace
spelling I28-R145-paper_07477171_v44_n9_p1280_Avendano_oai2024-08-16 Avendaño, M. 2009 We prove that a polynomial f ∈ R [x, y] with t non-zero terms, restricted to a real line y = a x + b, either has at most 6 t - 4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y - a x - b ∈ K [x, y] divides a lacunary polynomial f ∈ K [x, y], where K is a real number field. The number of bit operations performed by the algorithm is polynomial in the number of non-zero terms of f, in the logarithm of the degree of f, in the degree of the extension K / Q and in the logarithmic height of a, b and f. © 2009 Elsevier Ltd. All rights reserved. Fil:Avendaño, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1280_Avendano info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar J. Symb. Comput. 2009;44(9):1280-1284 Descartes' rule of signs Factorization of polynomials Fewnomials The number of roots of a lacunary bivariate polynomial on a line info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v44_n9_p1280_Avendano_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic Descartes' rule of signs
Factorization of polynomials
Fewnomials
spellingShingle Descartes' rule of signs
Factorization of polynomials
Fewnomials
Avendaño, M.
The number of roots of a lacunary bivariate polynomial on a line
topic_facet Descartes' rule of signs
Factorization of polynomials
Fewnomials
description We prove that a polynomial f ∈ R [x, y] with t non-zero terms, restricted to a real line y = a x + b, either has at most 6 t - 4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y - a x - b ∈ K [x, y] divides a lacunary polynomial f ∈ K [x, y], where K is a real number field. The number of bit operations performed by the algorithm is polynomial in the number of non-zero terms of f, in the logarithm of the degree of f, in the degree of the extension K / Q and in the logarithmic height of a, b and f. © 2009 Elsevier Ltd. All rights reserved.
format Artículo
Artículo
publishedVersion
author Avendaño, M.
author_facet Avendaño, M.
author_sort Avendaño, M.
title The number of roots of a lacunary bivariate polynomial on a line
title_short The number of roots of a lacunary bivariate polynomial on a line
title_full The number of roots of a lacunary bivariate polynomial on a line
title_fullStr The number of roots of a lacunary bivariate polynomial on a line
title_full_unstemmed The number of roots of a lacunary bivariate polynomial on a line
title_sort number of roots of a lacunary bivariate polynomial on a line
publishDate 2009
url http://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1280_Avendano
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_07477171_v44_n9_p1280_Avendano_oai
work_keys_str_mv AT avendanom thenumberofrootsofalacunarybivariatepolynomialonaline
AT avendanom numberofrootsofalacunarybivariatepolynomialonaline
_version_ 1809356911972188160