A parametric representation of totally mixed Nash equilibria
We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible numbe...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_08981221_v58_n6_p1126_Jeronimo https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_08981221_v58_n6_p1126_Jeronimo_oai |
Aporte de: |
id |
I28-R145-paper_08981221_v58_n6_p1126_Jeronimo_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_08981221_v58_n6_p1126_Jeronimo_oai2024-08-16 Jeronimo, G. Perrucci, D. Sabia, J. 2009 We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible number of this kind of equilibria. Then, we present symbolic procedures to describe the set of isolated totally mixed Nash equilibria of an arbitrary game and to compute, under certain general assumptions, the exact number of these equilibria. The complexity of all these algorithms is polynomial in the number of players, the number of each player's strategies and the generic number of totally mixed Nash equilibria of a game with the considered structure. © 2009 Elsevier Ltd. All rights reserved. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_08981221_v58_n6_p1126_Jeronimo info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Comput Math Appl 2009;58(6):1126-1141 Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory A parametric representation of totally mixed Nash equilibria info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_08981221_v58_n6_p1126_Jeronimo_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
topic |
Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory |
spellingShingle |
Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory Jeronimo, G. Perrucci, D. Sabia, J. A parametric representation of totally mixed Nash equilibria |
topic_facet |
Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory |
description |
We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible number of this kind of equilibria. Then, we present symbolic procedures to describe the set of isolated totally mixed Nash equilibria of an arbitrary game and to compute, under certain general assumptions, the exact number of these equilibria. The complexity of all these algorithms is polynomial in the number of players, the number of each player's strategies and the generic number of totally mixed Nash equilibria of a game with the considered structure. © 2009 Elsevier Ltd. All rights reserved. |
format |
Artículo Artículo publishedVersion |
author |
Jeronimo, G. Perrucci, D. Sabia, J. |
author_facet |
Jeronimo, G. Perrucci, D. Sabia, J. |
author_sort |
Jeronimo, G. |
title |
A parametric representation of totally mixed Nash equilibria |
title_short |
A parametric representation of totally mixed Nash equilibria |
title_full |
A parametric representation of totally mixed Nash equilibria |
title_fullStr |
A parametric representation of totally mixed Nash equilibria |
title_full_unstemmed |
A parametric representation of totally mixed Nash equilibria |
title_sort |
parametric representation of totally mixed nash equilibria |
publishDate |
2009 |
url |
http://hdl.handle.net/20.500.12110/paper_08981221_v58_n6_p1126_Jeronimo https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_08981221_v58_n6_p1126_Jeronimo_oai |
work_keys_str_mv |
AT jeronimog aparametricrepresentationoftotallymixednashequilibria AT perruccid aparametricrepresentationoftotallymixednashequilibria AT sabiaj aparametricrepresentationoftotallymixednashequilibria AT jeronimog parametricrepresentationoftotallymixednashequilibria AT perruccid parametricrepresentationoftotallymixednashequilibria AT sabiaj parametricrepresentationoftotallymixednashequilibria |
_version_ |
1809357102988132352 |