Solutions to H-systems by topological and iterative methods
We study H-systems with a Dirichlet boundary data g. Under some conditions, we show that if the problem admits a solution for some (H0, g 0), then it can be solved for any (H,g) close enough to (H 0,g0). Moreover, we construct a solution of the problem applying a Newton iteration.
Guardado en:
Autores principales: | , |
---|---|
Formato: | Artículo publishedVersion |
Publicado: |
2003
|
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10853375_v2003_n9_p539_Amster https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10853375_v2003_n9_p539_Amster_oai |
Aporte de: |
id |
I28-R145-paper_10853375_v2003_n9_p539_Amster_oai |
---|---|
record_format |
dspace |
spelling |
I28-R145-paper_10853375_v2003_n9_p539_Amster_oai2024-08-16 Amster, P. Mariani, M.C. 2003 We study H-systems with a Dirichlet boundary data g. Under some conditions, we show that if the problem admits a solution for some (H0, g 0), then it can be solved for any (H,g) close enough to (H 0,g0). Moreover, we construct a solution of the problem applying a Newton iteration. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_10853375_v2003_n9_p539_Amster info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar Abstr. Appl. Anal. 2003;2003(9):539-545 Solutions to H-systems by topological and iterative methods info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10853375_v2003_n9_p539_Amster_oai |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-145 |
collection |
Repositorio Digital de la Universidad de Buenos Aires (UBA) |
description |
We study H-systems with a Dirichlet boundary data g. Under some conditions, we show that if the problem admits a solution for some (H0, g 0), then it can be solved for any (H,g) close enough to (H 0,g0). Moreover, we construct a solution of the problem applying a Newton iteration. |
format |
Artículo Artículo publishedVersion |
author |
Amster, P. Mariani, M.C. |
spellingShingle |
Amster, P. Mariani, M.C. Solutions to H-systems by topological and iterative methods |
author_facet |
Amster, P. Mariani, M.C. |
author_sort |
Amster, P. |
title |
Solutions to H-systems by topological and iterative methods |
title_short |
Solutions to H-systems by topological and iterative methods |
title_full |
Solutions to H-systems by topological and iterative methods |
title_fullStr |
Solutions to H-systems by topological and iterative methods |
title_full_unstemmed |
Solutions to H-systems by topological and iterative methods |
title_sort |
solutions to h-systems by topological and iterative methods |
publishDate |
2003 |
url |
http://hdl.handle.net/20.500.12110/paper_10853375_v2003_n9_p539_Amster https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_10853375_v2003_n9_p539_Amster_oai |
work_keys_str_mv |
AT amsterp solutionstohsystemsbytopologicalanditerativemethods AT marianimc solutionstohsystemsbytopologicalanditerativemethods |
_version_ |
1809357018160431104 |