The best Sobolev trace constant in domains with holes for critical or subcritical exponents

In this paper we study the best constant in the Sobolev trace embedding H1 (Ω) → Lq(∂Ω) in a bounded smooth domain for 1 < q ≤ 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved fu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fernandezbonder, J., Orive, R., Rossi, J.D.
Formato: Artículo publishedVersion
Publicado: 2008
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_14461811_v49_n2_p213_Fernandezbonder
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_14461811_v49_n2_p213_Fernandezbonder_oai
Aporte de:
id I28-R145-paper_14461811_v49_n2_p213_Fernandezbonder_oai
record_format dspace
spelling I28-R145-paper_14461811_v49_n2_p213_Fernandezbonder_oai2024-08-16 Fernandezbonder, J. Orive, R. Rossi, J.D. 2008 In this paper we study the best constant in the Sobolev trace embedding H1 (Ω) → Lq(∂Ω) in a bounded smooth domain for 1 < q ≤ 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved functions vanish. There exists a critical size of the holes for which the limit problem has an extra term. For sizes larger than critical the best trace constant diverges to infinity and for sizes smaller than critical it converges to the best constant in the domain without holes. Also, we study the problem with the holes located on the boundary of the domain. In this case another critical exists and its extra term appears on the boundary. Copyright © Australian Mathematical Society 2007. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. application/pdf http://hdl.handle.net/20.500.12110/paper_14461811_v49_n2_p213_Fernandezbonder info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar ANZIAM J. 2008;49(2):213-230 homogenization nonlinear boundary conditions Sobolev trace embedding. The best Sobolev trace constant in domains with holes for critical or subcritical exponents info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_14461811_v49_n2_p213_Fernandezbonder_oai
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-145
collection Repositorio Digital de la Universidad de Buenos Aires (UBA)
topic homogenization
nonlinear boundary conditions
Sobolev trace embedding.
spellingShingle homogenization
nonlinear boundary conditions
Sobolev trace embedding.
Fernandezbonder, J.
Orive, R.
Rossi, J.D.
The best Sobolev trace constant in domains with holes for critical or subcritical exponents
topic_facet homogenization
nonlinear boundary conditions
Sobolev trace embedding.
description In this paper we study the best constant in the Sobolev trace embedding H1 (Ω) → Lq(∂Ω) in a bounded smooth domain for 1 < q ≤ 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved functions vanish. There exists a critical size of the holes for which the limit problem has an extra term. For sizes larger than critical the best trace constant diverges to infinity and for sizes smaller than critical it converges to the best constant in the domain without holes. Also, we study the problem with the holes located on the boundary of the domain. In this case another critical exists and its extra term appears on the boundary. Copyright © Australian Mathematical Society 2007.
format Artículo
Artículo
publishedVersion
author Fernandezbonder, J.
Orive, R.
Rossi, J.D.
author_facet Fernandezbonder, J.
Orive, R.
Rossi, J.D.
author_sort Fernandezbonder, J.
title The best Sobolev trace constant in domains with holes for critical or subcritical exponents
title_short The best Sobolev trace constant in domains with holes for critical or subcritical exponents
title_full The best Sobolev trace constant in domains with holes for critical or subcritical exponents
title_fullStr The best Sobolev trace constant in domains with holes for critical or subcritical exponents
title_full_unstemmed The best Sobolev trace constant in domains with holes for critical or subcritical exponents
title_sort best sobolev trace constant in domains with holes for critical or subcritical exponents
publishDate 2008
url http://hdl.handle.net/20.500.12110/paper_14461811_v49_n2_p213_Fernandezbonder
https://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=artiaex&d=paper_14461811_v49_n2_p213_Fernandezbonder_oai
work_keys_str_mv AT fernandezbonderj thebestsobolevtraceconstantindomainswithholesforcriticalorsubcriticalexponents
AT oriver thebestsobolevtraceconstantindomainswithholesforcriticalorsubcriticalexponents
AT rossijd thebestsobolevtraceconstantindomainswithholesforcriticalorsubcriticalexponents
AT fernandezbonderj bestsobolevtraceconstantindomainswithholesforcriticalorsubcriticalexponents
AT oriver bestsobolevtraceconstantindomainswithholesforcriticalorsubcriticalexponents
AT rossijd bestsobolevtraceconstantindomainswithholesforcriticalorsubcriticalexponents
_version_ 1809356836253466624