A characterization of iISS for time-varying impulsive systems

"Most of the existing characterizations of the integral input-to-state stability (iISS) property are not suitable for time varying or switched (nonlinear) systems. Previous work by the authors has shown that in such cases where converse Lyapunov theorems for stability are not available, iISS-Ly...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Haimovich, Hernán, Mancilla-Aguilar, J. L.
Formato: Ponencias en Congresos acceptedVersion
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://ri.itba.edu.ar/handle/123456789/1621
Aporte de:
id I32-R138-123456789-1621
record_format dspace
spelling I32-R138-123456789-16212022-12-07T14:13:34Z A characterization of iISS for time-varying impulsive systems Haimovich, Hernán Mancilla-Aguilar, J. L. ESTABILIDAD SISTEMAS NO LINEALES METODO LYAPUNOV "Most of the existing characterizations of the integral input-to-state stability (iISS) property are not suitable for time varying or switched (nonlinear) systems. Previous work by the authors has shown that in such cases where converse Lyapunov theorems for stability are not available, iISS-Lyapunov functions may not exist. In these cases, the iISS property can still be characterized as the combination of global uniform asymptotic stability under zero input (0-GUAS) and uniformly bounded energy input-bounded state (UBEBS). This paper shows that such a characterization remains valid for time-varying impulsive systems, under an appropriate condition on the number of impulse times on each finite time interval." 2019-06-18T21:56:20Z 2019-06-18T21:56:20Z 2018-12 Ponencias en Congresos info:eu-repo/semantics/acceptedVersion 978-9874-685-91-9 http://ri.itba.edu.ar/handle/123456789/1621 en info:eu-repo/semantics/altIdentifier/doi/10.23919/AADECA.2018.8577422 info:eu-repo/grantAgreement/FONCyT/PICT/2014-2599/AR. Ciudad Autónoma de Buenos Aires. application/pdf
institution Instituto Tecnológico de Buenos Aires (ITBA)
institution_str I-32
repository_str R-138
collection Repositorio Institucional Instituto Tecnológico de Buenos Aires (ITBA)
language Inglés
topic ESTABILIDAD
SISTEMAS NO LINEALES
METODO LYAPUNOV
spellingShingle ESTABILIDAD
SISTEMAS NO LINEALES
METODO LYAPUNOV
Haimovich, Hernán
Mancilla-Aguilar, J. L.
A characterization of iISS for time-varying impulsive systems
topic_facet ESTABILIDAD
SISTEMAS NO LINEALES
METODO LYAPUNOV
description "Most of the existing characterizations of the integral input-to-state stability (iISS) property are not suitable for time varying or switched (nonlinear) systems. Previous work by the authors has shown that in such cases where converse Lyapunov theorems for stability are not available, iISS-Lyapunov functions may not exist. In these cases, the iISS property can still be characterized as the combination of global uniform asymptotic stability under zero input (0-GUAS) and uniformly bounded energy input-bounded state (UBEBS). This paper shows that such a characterization remains valid for time-varying impulsive systems, under an appropriate condition on the number of impulse times on each finite time interval."
format Ponencias en Congresos
acceptedVersion
author Haimovich, Hernán
Mancilla-Aguilar, J. L.
author_facet Haimovich, Hernán
Mancilla-Aguilar, J. L.
author_sort Haimovich, Hernán
title A characterization of iISS for time-varying impulsive systems
title_short A characterization of iISS for time-varying impulsive systems
title_full A characterization of iISS for time-varying impulsive systems
title_fullStr A characterization of iISS for time-varying impulsive systems
title_full_unstemmed A characterization of iISS for time-varying impulsive systems
title_sort characterization of iiss for time-varying impulsive systems
publishDate 2019
url http://ri.itba.edu.ar/handle/123456789/1621
work_keys_str_mv AT haimovichhernan acharacterizationofiissfortimevaryingimpulsivesystems
AT mancillaaguilarjl acharacterizationofiissfortimevaryingimpulsivesystems
AT haimovichhernan characterizationofiissfortimevaryingimpulsivesystems
AT mancillaaguilarjl characterizationofiissfortimevaryingimpulsivesystems
_version_ 1765660968779513856