Comparison of Frequency Bands Using Spectral Entropy for Epileptic Seizure Prediction
Under the hypothesis that the uncontrolled neuronal synchronization propagates recruitingmore andmore neurons, the aim is to detect its onset as early as possible by signal analysis.This synchronization is not noticeable just by looking at the EEG, somathematical tools are needed for its identific...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Artículo |
Lenguaje: | Inglés |
Publicado: |
Universidad de Belgrano - Facultad de Ingeniería y Tecnología Informática - Proyectos de Investigación
2015
|
Materias: | |
Acceso en línea: | http://repositorio.ub.edu.ar/handle/123456789/4857 |
Aporte de: |
id |
I36-R142-123456789-4857 |
---|---|
record_format |
dspace |
institution |
Universidad de Belgrano |
institution_str |
I-36 |
repository_str |
R-142 |
collection |
Repositorio Institucional - Universidad de Belgrano (UB) |
language |
Inglés |
topic |
Frequency Bands Spectral Entropy Epileptic Seizure Prediction Predicción ataque epiléptico entropía espectral Bandas de Frecuencia |
spellingShingle |
Frequency Bands Spectral Entropy Epileptic Seizure Prediction Predicción ataque epiléptico entropía espectral Bandas de Frecuencia Blanco, Susana Garay, Arturo Coulombie, Diego Comparison of Frequency Bands Using Spectral Entropy for Epileptic Seizure Prediction |
topic_facet |
Frequency Bands Spectral Entropy Epileptic Seizure Prediction Predicción ataque epiléptico entropía espectral Bandas de Frecuencia |
description |
Under the hypothesis that the uncontrolled neuronal synchronization propagates recruitingmore andmore neurons,
the aim is to detect its onset as early as possible by signal analysis.This synchronization is not noticeable just by looking at the EEG,
somathematical tools are needed for its identification.Objective.The aimof this study is to compare the results of spectral entropies
calculated in different frequency bands of the EEG signals to decide which bandmay be a better tool to predict an epileptic seizure.
Materials andMethods. Invasive ictal recordswere used.Wemeasured the Fourier spectrumentropy of the electroencephalographic
signals 4 to 32minutes before the attack in low, mediumand high frequencies.Results.The high-frequency band shows amarkedly
rate of increase of the entropy, with positive slopes and low correlation coefficient.The entropy rate of growth in the low-frequency
band is practically zero, with a correlation around 0.2 and mostly positive slopes. The mid-frequency band showed both positive
andnegativeslopeswithlowcorrelation.Conclusions. The entropy in the high frequencies could be predictor, because it shows
changes in the previous moments of the attack. Its main problem is the variability, whichmakes it difficult to set the threshold that
ensures an adequate prediction. |
format |
Article |
author |
Blanco, Susana Garay, Arturo Coulombie, Diego |
author_facet |
Blanco, Susana Garay, Arturo Coulombie, Diego |
author_sort |
Blanco, Susana |
title |
Comparison of Frequency Bands Using Spectral Entropy for Epileptic Seizure Prediction |
title_short |
Comparison of Frequency Bands Using Spectral Entropy for Epileptic Seizure Prediction |
title_full |
Comparison of Frequency Bands Using Spectral Entropy for Epileptic Seizure Prediction |
title_fullStr |
Comparison of Frequency Bands Using Spectral Entropy for Epileptic Seizure Prediction |
title_full_unstemmed |
Comparison of Frequency Bands Using Spectral Entropy for Epileptic Seizure Prediction |
title_sort |
comparison of frequency bands using spectral entropy for epileptic seizure prediction |
publisher |
Universidad de Belgrano - Facultad de Ingeniería y Tecnología Informática - Proyectos de Investigación |
publishDate |
2015 |
url |
http://repositorio.ub.edu.ar/handle/123456789/4857 |
work_keys_str_mv |
AT blancosusana comparisonoffrequencybandsusingspectralentropyforepilepticseizureprediction AT garayarturo comparisonoffrequencybandsusingspectralentropyforepilepticseizureprediction AT coulombiediego comparisonoffrequencybandsusingspectralentropyforepilepticseizureprediction |
bdutipo_str |
Repositorios |
_version_ |
1764820529311645697 |