An the new riemann liouville fractional operator extended
In this paper we will introduce a new and modi ed Riemann-Liouville fractional operator that resulted from modifying the extended fractional derivative due to M. Ozarslan. We will study some familiar functions regarding this new operator, the transform Laplace and Mellin are calculate of the pot...
Guardado en:
Autor principal: | |
---|---|
Formato: | Artículo |
Lenguaje: | Inglés |
Publicado: |
JS Publication
2020
|
Materias: | |
Acceso en línea: | http://repositorio.unne.edu.ar/handle/123456789/9110 |
Aporte de: |
id |
I48-R184-123456789-9110 |
---|---|
record_format |
dspace |
spelling |
I48-R184-123456789-91102025-03-06T11:10:26Z An the new riemann liouville fractional operator extended Pucheta, Pablo I. Extended beta function Hypergeometric function Fractional calculus Laplace and mellin transform In this paper we will introduce a new and modi ed Riemann-Liouville fractional operator that resulted from modifying the extended fractional derivative due to M. Ozarslan. We will study some familiar functions regarding this new operator, the transform Laplace and Mellin are calculate of the potential function and we will also de ne a new hypergeometric function in term of extended beta function due to Pucheta. Fil: Pucheta, Pablo I. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Fil: Pucheta, Pablo I. Instituto Secundario Dr. Luis F. Leloir. Departamento de Matemáticas; Argentina. 2020-06-02T22:48:04Z 2020-06-02T22:48:04Z 2017 Artículo Pucheta, Pablo I. 2017. An The New Riemann-Liouville Fractional Operator Extended. International Journal of Mathematics And its Applications. India: JS Publication, vol. 5. no. 4. p. 255-260. ISSN: 2347-1557. 2347-1557 http://repositorio.unne.edu.ar/handle/123456789/9110 eng http://ijmaa.in/ openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ application/pdf p. 491–497 application/pdf JS Publication International Journal of Mathematics And its Applications, 2017, vol. 5, no. 4, p. 491-497. |
institution |
Universidad Nacional del Nordeste |
institution_str |
I-48 |
repository_str |
R-184 |
collection |
RIUNNE - Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
language |
Inglés |
topic |
Extended beta function Hypergeometric function Fractional calculus Laplace and mellin transform |
spellingShingle |
Extended beta function Hypergeometric function Fractional calculus Laplace and mellin transform Pucheta, Pablo I. An the new riemann liouville fractional operator extended |
topic_facet |
Extended beta function Hypergeometric function Fractional calculus Laplace and mellin transform |
description |
In this paper we will introduce a new and modi ed Riemann-Liouville fractional operator that resulted from modifying the
extended fractional derivative due to M. Ozarslan. We will study some familiar functions regarding this new operator,
the transform Laplace and Mellin are calculate of the potential function and we will also de ne a new hypergeometric
function in term of extended beta function due to Pucheta. |
format |
Artículo |
author |
Pucheta, Pablo I. |
author_facet |
Pucheta, Pablo I. |
author_sort |
Pucheta, Pablo I. |
title |
An the new riemann liouville fractional operator extended |
title_short |
An the new riemann liouville fractional operator extended |
title_full |
An the new riemann liouville fractional operator extended |
title_fullStr |
An the new riemann liouville fractional operator extended |
title_full_unstemmed |
An the new riemann liouville fractional operator extended |
title_sort |
the new riemann liouville fractional operator extended |
publisher |
JS Publication |
publishDate |
2020 |
url |
http://repositorio.unne.edu.ar/handle/123456789/9110 |
work_keys_str_mv |
AT puchetapabloi anthenewriemannliouvillefractionaloperatorextended AT puchetapabloi thenewriemannliouvillefractionaloperatorextended |
_version_ |
1832346011128823808 |