An the new riemann liouville fractional operator extended

In this paper we will introduce a new and modi ed Riemann-Liouville fractional operator that resulted from modifying the extended fractional derivative due to M. Ozarslan. We will study some familiar functions regarding this new operator, the transform Laplace and Mellin are calculate of the pot...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Pucheta, Pablo I.
Formato: Artículo
Lenguaje:Inglés
Publicado: JS Publication 2020
Materias:
Acceso en línea:http://repositorio.unne.edu.ar/handle/123456789/9110
Aporte de:
id I48-R184-123456789-9110
record_format dspace
spelling I48-R184-123456789-91102025-03-06T11:10:26Z An the new riemann liouville fractional operator extended Pucheta, Pablo I. Extended beta function Hypergeometric function Fractional calculus Laplace and mellin transform In this paper we will introduce a new and modi ed Riemann-Liouville fractional operator that resulted from modifying the extended fractional derivative due to M. Ozarslan. We will study some familiar functions regarding this new operator, the transform Laplace and Mellin are calculate of the potential function and we will also de ne a new hypergeometric function in term of extended beta function due to Pucheta. Fil: Pucheta, Pablo I. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Fil: Pucheta, Pablo I. Instituto Secundario Dr. Luis F. Leloir. Departamento de Matemáticas; Argentina. 2020-06-02T22:48:04Z 2020-06-02T22:48:04Z 2017 Artículo Pucheta, Pablo I. 2017. An The New Riemann-Liouville Fractional Operator Extended. International Journal of Mathematics And its Applications. India: JS Publication, vol. 5. no. 4. p. 255-260. ISSN: 2347-1557. 2347-1557 http://repositorio.unne.edu.ar/handle/123456789/9110 eng http://ijmaa.in/ openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ application/pdf p. 491–497 application/pdf JS Publication International Journal of Mathematics And its Applications, 2017, vol. 5, no. 4, p. 491-497.
institution Universidad Nacional del Nordeste
institution_str I-48
repository_str R-184
collection RIUNNE - Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
language Inglés
topic Extended beta function
Hypergeometric function
Fractional calculus
Laplace and mellin transform
spellingShingle Extended beta function
Hypergeometric function
Fractional calculus
Laplace and mellin transform
Pucheta, Pablo I.
An the new riemann liouville fractional operator extended
topic_facet Extended beta function
Hypergeometric function
Fractional calculus
Laplace and mellin transform
description In this paper we will introduce a new and modi ed Riemann-Liouville fractional operator that resulted from modifying the extended fractional derivative due to M. Ozarslan. We will study some familiar functions regarding this new operator, the transform Laplace and Mellin are calculate of the potential function and we will also de ne a new hypergeometric function in term of extended beta function due to Pucheta.
format Artículo
author Pucheta, Pablo I.
author_facet Pucheta, Pablo I.
author_sort Pucheta, Pablo I.
title An the new riemann liouville fractional operator extended
title_short An the new riemann liouville fractional operator extended
title_full An the new riemann liouville fractional operator extended
title_fullStr An the new riemann liouville fractional operator extended
title_full_unstemmed An the new riemann liouville fractional operator extended
title_sort the new riemann liouville fractional operator extended
publisher JS Publication
publishDate 2020
url http://repositorio.unne.edu.ar/handle/123456789/9110
work_keys_str_mv AT puchetapabloi anthenewriemannliouvillefractionaloperatorextended
AT puchetapabloi thenewriemannliouvillefractionaloperatorextended
_version_ 1832346011128823808