Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for...
Autores principales: | Cabrelli, Carlos Alberto, Molter, Ursula Maria, Romero, José Luis |
---|---|
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v232_n1_p98_Cabrelli http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli |
Aporte de: |
Ejemplares similares
-
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
por: Cabrelli, C., et al.
Publicado: (2013) -
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
por: Cabrelli, C., et al. -
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
por: Cabrelli, C., et al.
Publicado: (2013) -
Funciones de Sobolev y Besov en espacios métricos
por: Marcos, Miguel Andrés
Publicado: (2015) -
Regularidad Besov espacio temporal de temperaturas
por: Gómez, Ivana
Publicado: (2011)