On frames for Krein spaces
A definition of frames for Krein spaces is proposed, which extends the notion of . J-orthonormal bases of Krein spaces. A . J-frame for a Krein space . (H,[,]) is in particular a frame for . H in the Hilbert space sense. But it is also compatible with the indefinite inner product [. , . ], meaning t...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v393_n1_p122_Giribet |
Aporte de: |
id |
todo:paper_0022247X_v393_n1_p122_Giribet |
---|---|
record_format |
dspace |
spelling |
todo:paper_0022247X_v393_n1_p122_Giribet2023-10-03T14:29:19Z On frames for Krein spaces Giribet, J.I. Maestripieri, A. Martínez Pería, F. Massey, P.G. Frames Krein spaces Uniformly J-definite subspaces A definition of frames for Krein spaces is proposed, which extends the notion of . J-orthonormal bases of Krein spaces. A . J-frame for a Krein space . (H,[,]) is in particular a frame for . H in the Hilbert space sense. But it is also compatible with the indefinite inner product [. , . ], meaning that it determines a pair of maximal uniformly . J-definite subspaces, an analogue to the maximal dual pair associated to a . J-orthonormal basis.Also, each . J-frame induces an indefinite reconstruction formula for the vectors in . H, which resembles the one given by a . J-orthonormal basis. © 2012 Elsevier Ltd. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v393_n1_p122_Giribet |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Frames Krein spaces Uniformly J-definite subspaces |
spellingShingle |
Frames Krein spaces Uniformly J-definite subspaces Giribet, J.I. Maestripieri, A. Martínez Pería, F. Massey, P.G. On frames for Krein spaces |
topic_facet |
Frames Krein spaces Uniformly J-definite subspaces |
description |
A definition of frames for Krein spaces is proposed, which extends the notion of . J-orthonormal bases of Krein spaces. A . J-frame for a Krein space . (H,[,]) is in particular a frame for . H in the Hilbert space sense. But it is also compatible with the indefinite inner product [. , . ], meaning that it determines a pair of maximal uniformly . J-definite subspaces, an analogue to the maximal dual pair associated to a . J-orthonormal basis.Also, each . J-frame induces an indefinite reconstruction formula for the vectors in . H, which resembles the one given by a . J-orthonormal basis. © 2012 Elsevier Ltd. |
format |
JOUR |
author |
Giribet, J.I. Maestripieri, A. Martínez Pería, F. Massey, P.G. |
author_facet |
Giribet, J.I. Maestripieri, A. Martínez Pería, F. Massey, P.G. |
author_sort |
Giribet, J.I. |
title |
On frames for Krein spaces |
title_short |
On frames for Krein spaces |
title_full |
On frames for Krein spaces |
title_fullStr |
On frames for Krein spaces |
title_full_unstemmed |
On frames for Krein spaces |
title_sort |
on frames for krein spaces |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v393_n1_p122_Giribet |
work_keys_str_mv |
AT giribetji onframesforkreinspaces AT maestripieria onframesforkreinspaces AT martinezperiaf onframesforkreinspaces AT masseypg onframesforkreinspaces |
_version_ |
1807316476835659776 |