Complete intersections in toric ideals

We present examples that show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cattani, Eduardo H.C., Dickenstein, Alicia Marcela
Publicado: 2007
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v135_n2_p329_Cattani
http://hdl.handle.net/20.500.12110/paper_00029939_v135_n2_p329_Cattani
Aporte de:
id paper:paper_00029939_v135_n2_p329_Cattani
record_format dspace
spelling paper:paper_00029939_v135_n2_p329_Cattani2023-06-08T14:23:29Z Complete intersections in toric ideals Cattani, Eduardo H.C. Dickenstein, Alicia Marcela We present examples that show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the study of the Horn system of partial differential equations. © 2006 American Mathematical Society. Fil:Cattani, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2007 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v135_n2_p329_Cattani http://hdl.handle.net/20.500.12110/paper_00029939_v135_n2_p329_Cattani
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We present examples that show that in dimension higher than one or codimension higher than two, there exist toric ideals IA such that no binomial ideal contained in IA and of the same dimension is a complete intersection. This result has important implications in sparse elimination theory and in the study of the Horn system of partial differential equations. © 2006 American Mathematical Society.
author Cattani, Eduardo H.C.
Dickenstein, Alicia Marcela
spellingShingle Cattani, Eduardo H.C.
Dickenstein, Alicia Marcela
Complete intersections in toric ideals
author_facet Cattani, Eduardo H.C.
Dickenstein, Alicia Marcela
author_sort Cattani, Eduardo H.C.
title Complete intersections in toric ideals
title_short Complete intersections in toric ideals
title_full Complete intersections in toric ideals
title_fullStr Complete intersections in toric ideals
title_full_unstemmed Complete intersections in toric ideals
title_sort complete intersections in toric ideals
publishDate 2007
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v135_n2_p329_Cattani
http://hdl.handle.net/20.500.12110/paper_00029939_v135_n2_p329_Cattani
work_keys_str_mv AT cattanieduardohc completeintersectionsintoricideals
AT dickensteinaliciamarcela completeintersectionsintoricideals
_version_ 1768543491172859904