Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent

Using the theory of covering groups of Schur we prove that the two Nichols algebras associated to the conjugacy class of transpositions in S n are equivalent by twist and hence they have the same Hilbert series. These algebras appear in the classification of pointed Hopf algebras and in the study of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vendramin, Leandro
Publicado: 2012
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v140_n11_p3715_Vendramin
http://hdl.handle.net/20.500.12110/paper_00029939_v140_n11_p3715_Vendramin
Aporte de:
id paper:paper_00029939_v140_n11_p3715_Vendramin
record_format dspace
spelling paper:paper_00029939_v140_n11_p3715_Vendramin2023-06-08T14:23:31Z Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent Vendramin, Leandro Using the theory of covering groups of Schur we prove that the two Nichols algebras associated to the conjugacy class of transpositions in S n are equivalent by twist and hence they have the same Hilbert series. These algebras appear in the classification of pointed Hopf algebras and in the study of the quantum cohomology ring of flag manifolds. © 2012 American Mathematical Society. Fil:Vendramin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2012 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v140_n11_p3715_Vendramin http://hdl.handle.net/20.500.12110/paper_00029939_v140_n11_p3715_Vendramin
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Using the theory of covering groups of Schur we prove that the two Nichols algebras associated to the conjugacy class of transpositions in S n are equivalent by twist and hence they have the same Hilbert series. These algebras appear in the classification of pointed Hopf algebras and in the study of the quantum cohomology ring of flag manifolds. © 2012 American Mathematical Society.
author Vendramin, Leandro
spellingShingle Vendramin, Leandro
Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
author_facet Vendramin, Leandro
author_sort Vendramin, Leandro
title Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
title_short Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
title_full Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
title_fullStr Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
title_full_unstemmed Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
title_sort nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
publishDate 2012
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v140_n11_p3715_Vendramin
http://hdl.handle.net/20.500.12110/paper_00029939_v140_n11_p3715_Vendramin
work_keys_str_mv AT vendraminleandro nicholsalgebrasassociatedtothetranspositionsofthesymmetricgrouparetwistequivalent
_version_ 1768544982384246784