Hopf braces and Yang-Baxter operators
This paper introduces Hopf braces, a new algebraic structure related to the Yang–Baxter equation, which include Rump’s braces and their non-commutative generalizations as particular cases. Several results of classical braces are still valid in our context. Furthermore, Hopf braces provide the right...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2017
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v145_n5_p1981_Angiono http://hdl.handle.net/20.500.12110/paper_00029939_v145_n5_p1981_Angiono |
Aporte de: |
id |
paper:paper_00029939_v145_n5_p1981_Angiono |
---|---|
record_format |
dspace |
spelling |
paper:paper_00029939_v145_n5_p1981_Angiono2023-06-08T14:23:36Z Hopf braces and Yang-Baxter operators Vendramin, Leandro This paper introduces Hopf braces, a new algebraic structure related to the Yang–Baxter equation, which include Rump’s braces and their non-commutative generalizations as particular cases. Several results of classical braces are still valid in our context. Furthermore, Hopf braces provide the right setting for considering left symmetric algebras as Lie-theoretical analogs of braces. © 2016 American Mathematical Society. Fil:Vendramin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2017 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v145_n5_p1981_Angiono http://hdl.handle.net/20.500.12110/paper_00029939_v145_n5_p1981_Angiono |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
This paper introduces Hopf braces, a new algebraic structure related to the Yang–Baxter equation, which include Rump’s braces and their non-commutative generalizations as particular cases. Several results of classical braces are still valid in our context. Furthermore, Hopf braces provide the right setting for considering left symmetric algebras as Lie-theoretical analogs of braces. © 2016 American Mathematical Society. |
author |
Vendramin, Leandro |
spellingShingle |
Vendramin, Leandro Hopf braces and Yang-Baxter operators |
author_facet |
Vendramin, Leandro |
author_sort |
Vendramin, Leandro |
title |
Hopf braces and Yang-Baxter operators |
title_short |
Hopf braces and Yang-Baxter operators |
title_full |
Hopf braces and Yang-Baxter operators |
title_fullStr |
Hopf braces and Yang-Baxter operators |
title_full_unstemmed |
Hopf braces and Yang-Baxter operators |
title_sort |
hopf braces and yang-baxter operators |
publishDate |
2017 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v145_n5_p1981_Angiono http://hdl.handle.net/20.500.12110/paper_00029939_v145_n5_p1981_Angiono |
work_keys_str_mv |
AT vendraminleandro hopfbracesandyangbaxteroperators |
_version_ |
1768541776423944192 |