Hopf braces and Yang-Baxter operators

This paper introduces Hopf braces, a new algebraic structure related to the Yang–Baxter equation, which include Rump’s braces and their non-commutative generalizations as particular cases. Several results of classical braces are still valid in our context. Furthermore, Hopf braces provide the right...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Vendramin, Leandro
Publicado: 2017
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v145_n5_p1981_Angiono
http://hdl.handle.net/20.500.12110/paper_00029939_v145_n5_p1981_Angiono
Aporte de:
id paper:paper_00029939_v145_n5_p1981_Angiono
record_format dspace
spelling paper:paper_00029939_v145_n5_p1981_Angiono2023-06-08T14:23:36Z Hopf braces and Yang-Baxter operators Vendramin, Leandro This paper introduces Hopf braces, a new algebraic structure related to the Yang–Baxter equation, which include Rump’s braces and their non-commutative generalizations as particular cases. Several results of classical braces are still valid in our context. Furthermore, Hopf braces provide the right setting for considering left symmetric algebras as Lie-theoretical analogs of braces. © 2016 American Mathematical Society. Fil:Vendramin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2017 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v145_n5_p1981_Angiono http://hdl.handle.net/20.500.12110/paper_00029939_v145_n5_p1981_Angiono
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description This paper introduces Hopf braces, a new algebraic structure related to the Yang–Baxter equation, which include Rump’s braces and their non-commutative generalizations as particular cases. Several results of classical braces are still valid in our context. Furthermore, Hopf braces provide the right setting for considering left symmetric algebras as Lie-theoretical analogs of braces. © 2016 American Mathematical Society.
author Vendramin, Leandro
spellingShingle Vendramin, Leandro
Hopf braces and Yang-Baxter operators
author_facet Vendramin, Leandro
author_sort Vendramin, Leandro
title Hopf braces and Yang-Baxter operators
title_short Hopf braces and Yang-Baxter operators
title_full Hopf braces and Yang-Baxter operators
title_fullStr Hopf braces and Yang-Baxter operators
title_full_unstemmed Hopf braces and Yang-Baxter operators
title_sort hopf braces and yang-baxter operators
publishDate 2017
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v145_n5_p1981_Angiono
http://hdl.handle.net/20.500.12110/paper_00029939_v145_n5_p1981_Angiono
work_keys_str_mv AT vendraminleandro hopfbracesandyangbaxteroperators
_version_ 1768541776423944192