Decomposable symmetric mappings between infinite-dimensional spaces

Decomposable mappings from the space of symmetric k-fold tensors over E, O×s,kE, to the space of k-fold tensors over F, O×s,kF, are those linear operators which map nonzero decomposable elements to nonzero decomposable elements. We prove that any decomposable mapping is induced by an injective linea...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lassalle, Silvia Beatriz
Publicado: 2008
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00042080_v46_n1_p7_Boyd
http://hdl.handle.net/20.500.12110/paper_00042080_v46_n1_p7_Boyd
Aporte de:
id paper:paper_00042080_v46_n1_p7_Boyd
record_format dspace
spelling paper:paper_00042080_v46_n1_p7_Boyd2023-06-08T14:25:12Z Decomposable symmetric mappings between infinite-dimensional spaces Lassalle, Silvia Beatriz Decomposable mappings from the space of symmetric k-fold tensors over E, O×s,kE, to the space of k-fold tensors over F, O×s,kF, are those linear operators which map nonzero decomposable elements to nonzero decomposable elements. We prove that any decomposable mapping is induced by an injective linear operator between the spaces on which the tensors are defined. Moreover, if the decomposable mapping belongs to a given operator ideal, then so does its inducing operator. This result allows us to classify injective linear operators between spaces of homogeneous approximable polynomials and between spaces of nuclear polynomials which map rank-1 polynomials to rank-1 polynomials. © 2007 Institut Mittag-Leffler. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2008 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00042080_v46_n1_p7_Boyd http://hdl.handle.net/20.500.12110/paper_00042080_v46_n1_p7_Boyd
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Decomposable mappings from the space of symmetric k-fold tensors over E, O×s,kE, to the space of k-fold tensors over F, O×s,kF, are those linear operators which map nonzero decomposable elements to nonzero decomposable elements. We prove that any decomposable mapping is induced by an injective linear operator between the spaces on which the tensors are defined. Moreover, if the decomposable mapping belongs to a given operator ideal, then so does its inducing operator. This result allows us to classify injective linear operators between spaces of homogeneous approximable polynomials and between spaces of nuclear polynomials which map rank-1 polynomials to rank-1 polynomials. © 2007 Institut Mittag-Leffler.
author Lassalle, Silvia Beatriz
spellingShingle Lassalle, Silvia Beatriz
Decomposable symmetric mappings between infinite-dimensional spaces
author_facet Lassalle, Silvia Beatriz
author_sort Lassalle, Silvia Beatriz
title Decomposable symmetric mappings between infinite-dimensional spaces
title_short Decomposable symmetric mappings between infinite-dimensional spaces
title_full Decomposable symmetric mappings between infinite-dimensional spaces
title_fullStr Decomposable symmetric mappings between infinite-dimensional spaces
title_full_unstemmed Decomposable symmetric mappings between infinite-dimensional spaces
title_sort decomposable symmetric mappings between infinite-dimensional spaces
publishDate 2008
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00042080_v46_n1_p7_Boyd
http://hdl.handle.net/20.500.12110/paper_00042080_v46_n1_p7_Boyd
work_keys_str_mv AT lassallesilviabeatriz decomposablesymmetricmappingsbetweeninfinitedimensionalspaces
_version_ 1768546233353240576