Bass' NK groups and cdh-fibrant Hochschild homology
The K-theory of a polynomial ring R[t] contains the K-theory of R as a summand. For R commutative and containing ℚ, we describe K*(R[t])/K*(R) in terms of Hochschild homology and the cohomology of Kähler differentials for the cdh topology. We use this to address Bass' question, whether Kn(R)=Kn...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2010
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00209910_v181_n2_p421_Cortinas http://hdl.handle.net/20.500.12110/paper_00209910_v181_n2_p421_Cortinas |
Aporte de: |
id |
paper:paper_00209910_v181_n2_p421_Cortinas |
---|---|
record_format |
dspace |
spelling |
paper:paper_00209910_v181_n2_p421_Cortinas2023-06-08T14:42:01Z Bass' NK groups and cdh-fibrant Hochschild homology Cortiñas, Guillermo Horacio The K-theory of a polynomial ring R[t] contains the K-theory of R as a summand. For R commutative and containing ℚ, we describe K*(R[t])/K*(R) in terms of Hochschild homology and the cohomology of Kähler differentials for the cdh topology. We use this to address Bass' question, whether Kn(R)=Kn(R[t]) implies Kn(R)=Kn(R[t1,t2]). The answer to this question is affirmative when R is essentially of finite type over the complex numbers, but negative in general. © 2010 The Author(s). Fil:Cortiñas, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2010 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00209910_v181_n2_p421_Cortinas http://hdl.handle.net/20.500.12110/paper_00209910_v181_n2_p421_Cortinas |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
The K-theory of a polynomial ring R[t] contains the K-theory of R as a summand. For R commutative and containing ℚ, we describe K*(R[t])/K*(R) in terms of Hochschild homology and the cohomology of Kähler differentials for the cdh topology. We use this to address Bass' question, whether Kn(R)=Kn(R[t]) implies Kn(R)=Kn(R[t1,t2]). The answer to this question is affirmative when R is essentially of finite type over the complex numbers, but negative in general. © 2010 The Author(s). |
author |
Cortiñas, Guillermo Horacio |
spellingShingle |
Cortiñas, Guillermo Horacio Bass' NK groups and cdh-fibrant Hochschild homology |
author_facet |
Cortiñas, Guillermo Horacio |
author_sort |
Cortiñas, Guillermo Horacio |
title |
Bass' NK groups and cdh-fibrant Hochschild homology |
title_short |
Bass' NK groups and cdh-fibrant Hochschild homology |
title_full |
Bass' NK groups and cdh-fibrant Hochschild homology |
title_fullStr |
Bass' NK groups and cdh-fibrant Hochschild homology |
title_full_unstemmed |
Bass' NK groups and cdh-fibrant Hochschild homology |
title_sort |
bass' nk groups and cdh-fibrant hochschild homology |
publishDate |
2010 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00209910_v181_n2_p421_Cortinas http://hdl.handle.net/20.500.12110/paper_00209910_v181_n2_p421_Cortinas |
work_keys_str_mv |
AT cortinasguillermohoracio bassnkgroupsandcdhfibranthochschildhomology |
_version_ |
1768544536463671296 |