Bass' NK groups and cdh-fibrant Hochschild homology

The K-theory of a polynomial ring R[t] contains the K-theory of R as a summand. For R commutative and containing ℚ, we describe K*(R[t])/K*(R) in terms of Hochschild homology and the cohomology of Kähler differentials for the cdh topology. We use this to address Bass' question, whether Kn(R)=Kn...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cortiñas, Guillermo Horacio
Publicado: 2010
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00209910_v181_n2_p421_Cortinas
http://hdl.handle.net/20.500.12110/paper_00209910_v181_n2_p421_Cortinas
Aporte de:
Descripción
Sumario:The K-theory of a polynomial ring R[t] contains the K-theory of R as a summand. For R commutative and containing ℚ, we describe K*(R[t])/K*(R) in terms of Hochschild homology and the cohomology of Kähler differentials for the cdh topology. We use this to address Bass' question, whether Kn(R)=Kn(R[t]) implies Kn(R)=Kn(R[t1,t2]). The answer to this question is affirmative when R is essentially of finite type over the complex numbers, but negative in general. © 2010 The Author(s).