Accuracy of Lattice Translates of Several Multidimensional Refinable Functions

Complex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cabrelli, Carlos Alberto, Molter, Ursula Maria
Publicado: 1998
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219045_v95_n1_p5_Cabrelli
http://hdl.handle.net/20.500.12110/paper_00219045_v95_n1_p5_Cabrelli
Aporte de:
id paper:paper_00219045_v95_n1_p5_Cabrelli
record_format dspace
spelling paper:paper_00219045_v95_n1_p5_Cabrelli2023-06-08T14:43:05Z Accuracy of Lattice Translates of Several Multidimensional Refinable Functions Cabrelli, Carlos Alberto Molter, Ursula Maria Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets Complex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equationf(x)=∑k∈Λckf(Ax-k), whereΛis a finite subset ofΓ, theckarer×rmatrices, andf(x)=(f1(x),...,fr(x))T. Theaccuracyoffis the highest degreepsuch that all multivariate polynomialsqwith degree(q)<pare exactly reproduced from linear combinations of translates off1,...,fralong the latticeΓ. In this paper, we determine the accuracypfrom the matricesck. Moreover, we determine explicitly the coefficientsyα,i(k) such thatxα=∑ri=1∑ k∈Γyα,i(k)fi(x+k). These coefficients are multivariate polynomialsyα,i(x) of degree α evaluated at lattice pointsk∈1. © 1998 Academic Press. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1998 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219045_v95_n1_p5_Cabrelli http://hdl.handle.net/20.500.12110/paper_00219045_v95_n1_p5_Cabrelli
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets
spellingShingle Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets
Cabrelli, Carlos Alberto
Molter, Ursula Maria
Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
topic_facet Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets
description Complex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equationf(x)=∑k∈Λckf(Ax-k), whereΛis a finite subset ofΓ, theckarer×rmatrices, andf(x)=(f1(x),...,fr(x))T. Theaccuracyoffis the highest degreepsuch that all multivariate polynomialsqwith degree(q)<pare exactly reproduced from linear combinations of translates off1,...,fralong the latticeΓ. In this paper, we determine the accuracypfrom the matricesck. Moreover, we determine explicitly the coefficientsyα,i(k) such thatxα=∑ri=1∑ k∈Γyα,i(k)fi(x+k). These coefficients are multivariate polynomialsyα,i(x) of degree α evaluated at lattice pointsk∈1. © 1998 Academic Press.
author Cabrelli, Carlos Alberto
Molter, Ursula Maria
author_facet Cabrelli, Carlos Alberto
Molter, Ursula Maria
author_sort Cabrelli, Carlos Alberto
title Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
title_short Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
title_full Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
title_fullStr Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
title_full_unstemmed Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
title_sort accuracy of lattice translates of several multidimensional refinable functions
publishDate 1998
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219045_v95_n1_p5_Cabrelli
http://hdl.handle.net/20.500.12110/paper_00219045_v95_n1_p5_Cabrelli
work_keys_str_mv AT cabrellicarlosalberto accuracyoflatticetranslatesofseveralmultidimensionalrefinablefunctions
AT molterursulamaria accuracyoflatticetranslatesofseveralmultidimensionalrefinablefunctions
_version_ 1768544852523352064