Accuracy of Lattice Translates of Several Multidimensional Refinable Functions
Complex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equa...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
1998
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219045_v95_n1_p5_Cabrelli http://hdl.handle.net/20.500.12110/paper_00219045_v95_n1_p5_Cabrelli |
Aporte de: |
id |
paper:paper_00219045_v95_n1_p5_Cabrelli |
---|---|
record_format |
dspace |
spelling |
paper:paper_00219045_v95_n1_p5_Cabrelli2023-06-08T14:43:05Z Accuracy of Lattice Translates of Several Multidimensional Refinable Functions Cabrelli, Carlos Alberto Molter, Ursula Maria Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets Complex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equationf(x)=∑k∈Λckf(Ax-k), whereΛis a finite subset ofΓ, theckarer×rmatrices, andf(x)=(f1(x),...,fr(x))T. Theaccuracyoffis the highest degreepsuch that all multivariate polynomialsqwith degree(q)<pare exactly reproduced from linear combinations of translates off1,...,fralong the latticeΓ. In this paper, we determine the accuracypfrom the matricesck. Moreover, we determine explicitly the coefficientsyα,i(k) such thatxα=∑ri=1∑ k∈Γyα,i(k)fi(x+k). These coefficients are multivariate polynomialsyα,i(x) of degree α evaluated at lattice pointsk∈1. © 1998 Academic Press. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1998 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219045_v95_n1_p5_Cabrelli http://hdl.handle.net/20.500.12110/paper_00219045_v95_n1_p5_Cabrelli |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets |
spellingShingle |
Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets Cabrelli, Carlos Alberto Molter, Ursula Maria Accuracy of Lattice Translates of Several Multidimensional Refinable Functions |
topic_facet |
Accuracy; approximation by translates; dilation equations; dilation matrix; multidimensional refinable functions; multidimensional wavelets; multiwavelets; refinement equations; refinable functions; shift invariant spaces; wavelets |
description |
Complex-valued functionsf1,...,fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax-k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equationf(x)=∑k∈Λckf(Ax-k), whereΛis a finite subset ofΓ, theckarer×rmatrices, andf(x)=(f1(x),...,fr(x))T. Theaccuracyoffis the highest degreepsuch that all multivariate polynomialsqwith degree(q)<pare exactly reproduced from linear combinations of translates off1,...,fralong the latticeΓ. In this paper, we determine the accuracypfrom the matricesck. Moreover, we determine explicitly the coefficientsyα,i(k) such thatxα=∑ri=1∑ k∈Γyα,i(k)fi(x+k). These coefficients are multivariate polynomialsyα,i(x) of degree α evaluated at lattice pointsk∈1. © 1998 Academic Press. |
author |
Cabrelli, Carlos Alberto Molter, Ursula Maria |
author_facet |
Cabrelli, Carlos Alberto Molter, Ursula Maria |
author_sort |
Cabrelli, Carlos Alberto |
title |
Accuracy of Lattice Translates of Several Multidimensional Refinable Functions |
title_short |
Accuracy of Lattice Translates of Several Multidimensional Refinable Functions |
title_full |
Accuracy of Lattice Translates of Several Multidimensional Refinable Functions |
title_fullStr |
Accuracy of Lattice Translates of Several Multidimensional Refinable Functions |
title_full_unstemmed |
Accuracy of Lattice Translates of Several Multidimensional Refinable Functions |
title_sort |
accuracy of lattice translates of several multidimensional refinable functions |
publishDate |
1998 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219045_v95_n1_p5_Cabrelli http://hdl.handle.net/20.500.12110/paper_00219045_v95_n1_p5_Cabrelli |
work_keys_str_mv |
AT cabrellicarlosalberto accuracyoflatticetranslatesofseveralmultidimensionalrefinablefunctions AT molterursulamaria accuracyoflatticetranslatesofseveralmultidimensionalrefinablefunctions |
_version_ |
1768544852523352064 |