Flow through a porous column

The general equation describing the steady-state flow through a porous column is λu - DxA(Dxθ{symbol}(u) + G(u)) = f, where λ is a nonnegative constant. In this paper existence, uniqueness and comparison results for solutions to the Dirichlet and mixed boundary value problems associated with this eq...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wolanski, Noemi Irene
Publicado: 1985
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v109_n1_p140_Wolanski
http://hdl.handle.net/20.500.12110/paper_0022247X_v109_n1_p140_Wolanski
Aporte de:
id paper:paper_0022247X_v109_n1_p140_Wolanski
record_format dspace
spelling paper:paper_0022247X_v109_n1_p140_Wolanski2023-06-08T14:47:44Z Flow through a porous column Wolanski, Noemi Irene MATHEMATICAL TECHNIQUES - Differential Equations DIRICHLET PROBLEM MIXED BOUNDARY VALUE PROBLEM FLOW OF FLUIDS The general equation describing the steady-state flow through a porous column is λu - DxA(Dxθ{symbol}(u) + G(u)) = f, where λ is a nonnegative constant. In this paper existence, uniqueness and comparison results for solutions to the Dirichlet and mixed boundary value problems associated with this equation are proven. The existence of a weak solution to the evolution problems associated with the equation ut = Dx(Dxθ{symbol}(u) + G(u)) are deduced. © 1985. Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1985 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v109_n1_p140_Wolanski http://hdl.handle.net/20.500.12110/paper_0022247X_v109_n1_p140_Wolanski
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic MATHEMATICAL TECHNIQUES - Differential Equations
DIRICHLET PROBLEM
MIXED BOUNDARY VALUE PROBLEM
FLOW OF FLUIDS
spellingShingle MATHEMATICAL TECHNIQUES - Differential Equations
DIRICHLET PROBLEM
MIXED BOUNDARY VALUE PROBLEM
FLOW OF FLUIDS
Wolanski, Noemi Irene
Flow through a porous column
topic_facet MATHEMATICAL TECHNIQUES - Differential Equations
DIRICHLET PROBLEM
MIXED BOUNDARY VALUE PROBLEM
FLOW OF FLUIDS
description The general equation describing the steady-state flow through a porous column is λu - DxA(Dxθ{symbol}(u) + G(u)) = f, where λ is a nonnegative constant. In this paper existence, uniqueness and comparison results for solutions to the Dirichlet and mixed boundary value problems associated with this equation are proven. The existence of a weak solution to the evolution problems associated with the equation ut = Dx(Dxθ{symbol}(u) + G(u)) are deduced. © 1985.
author Wolanski, Noemi Irene
author_facet Wolanski, Noemi Irene
author_sort Wolanski, Noemi Irene
title Flow through a porous column
title_short Flow through a porous column
title_full Flow through a porous column
title_fullStr Flow through a porous column
title_full_unstemmed Flow through a porous column
title_sort flow through a porous column
publishDate 1985
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v109_n1_p140_Wolanski
http://hdl.handle.net/20.500.12110/paper_0022247X_v109_n1_p140_Wolanski
work_keys_str_mv AT wolanskinoemiirene flowthroughaporouscolumn
_version_ 1768544258408579072