Extension of vector-valued integral polynomials
We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral po...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
2005
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v307_n1_p77_Carando http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando |
Aporte de: |
id |
paper:paper_0022247X_v307_n1_p77_Carando |
---|---|
record_format |
dspace |
spelling |
paper:paper_0022247X_v307_n1_p77_Carando2023-06-08T14:47:48Z Extension of vector-valued integral polynomials Carando, Daniel German Lassalle, Silvia Beatriz Extendibility Integral polynomials We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2005 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v307_n1_p77_Carando http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Extendibility Integral polynomials |
spellingShingle |
Extendibility Integral polynomials Carando, Daniel German Lassalle, Silvia Beatriz Extension of vector-valued integral polynomials |
topic_facet |
Extendibility Integral polynomials |
description |
We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved. |
author |
Carando, Daniel German Lassalle, Silvia Beatriz |
author_facet |
Carando, Daniel German Lassalle, Silvia Beatriz |
author_sort |
Carando, Daniel German |
title |
Extension of vector-valued integral polynomials |
title_short |
Extension of vector-valued integral polynomials |
title_full |
Extension of vector-valued integral polynomials |
title_fullStr |
Extension of vector-valued integral polynomials |
title_full_unstemmed |
Extension of vector-valued integral polynomials |
title_sort |
extension of vector-valued integral polynomials |
publishDate |
2005 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v307_n1_p77_Carando http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando |
work_keys_str_mv |
AT carandodanielgerman extensionofvectorvaluedintegralpolynomials AT lassallesilviabeatriz extensionofvectorvaluedintegralpolynomials |
_version_ |
1768543500156010496 |