Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp
In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem....
Guardado en:
Autores principales: | , , , |
---|---|
Publicado: |
2005
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v310_n2_p397_Acosta http://hdl.handle.net/20.500.12110/paper_0022247X_v310_n2_p397_Acosta |
Aporte de: |
id |
paper:paper_0022247X_v310_n2_p397_Acosta |
---|---|
record_format |
dspace |
spelling |
paper:paper_0022247X_v310_n2_p397_Acosta2023-06-08T14:47:50Z Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp Acosta Rodriguez, Gabriel Armentano, Maria Gabriela Duran, Ricardo Guillermo Lombardi, Ariel L. Cuspidal domains Neumann problem Regularity Traces In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H1 (Ω) does not apply, in fact the restriction of H1 (Ω) functions is not necessarily in L2 (∂Ω). So, we introduce a trace theorem by using weighted Sobolev norms in Ω. Under appropriate assumptions we prove that the solution of our problem is in H2 (Ω) and we obtain an a priori estimate for the second derivatives of the solution. © 2005 Elsevier Inc. All rights reserved. Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lombardi, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2005 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v310_n2_p397_Acosta http://hdl.handle.net/20.500.12110/paper_0022247X_v310_n2_p397_Acosta |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Cuspidal domains Neumann problem Regularity Traces |
spellingShingle |
Cuspidal domains Neumann problem Regularity Traces Acosta Rodriguez, Gabriel Armentano, Maria Gabriela Duran, Ricardo Guillermo Lombardi, Ariel L. Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp |
topic_facet |
Cuspidal domains Neumann problem Regularity Traces |
description |
In this work we analyze the existence and regularity of the solution of a nonhomogeneous Neumann problem for the Poisson equation in a plane domain Ω with an external cusp. In order to prove that there exists a unique solution in H1 (Ω) using the Lax-Milgram theorem we need to apply a trace theorem. Since Ω is not a Lipschitz domain, the standard trace theorem for H1 (Ω) does not apply, in fact the restriction of H1 (Ω) functions is not necessarily in L2 (∂Ω). So, we introduce a trace theorem by using weighted Sobolev norms in Ω. Under appropriate assumptions we prove that the solution of our problem is in H2 (Ω) and we obtain an a priori estimate for the second derivatives of the solution. © 2005 Elsevier Inc. All rights reserved. |
author |
Acosta Rodriguez, Gabriel Armentano, Maria Gabriela Duran, Ricardo Guillermo Lombardi, Ariel L. |
author_facet |
Acosta Rodriguez, Gabriel Armentano, Maria Gabriela Duran, Ricardo Guillermo Lombardi, Ariel L. |
author_sort |
Acosta Rodriguez, Gabriel |
title |
Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp |
title_short |
Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp |
title_full |
Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp |
title_fullStr |
Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp |
title_full_unstemmed |
Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp |
title_sort |
nonhomogeneous neumann problem for the poisson equation in domains with an external cusp |
publishDate |
2005 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v310_n2_p397_Acosta http://hdl.handle.net/20.500.12110/paper_0022247X_v310_n2_p397_Acosta |
work_keys_str_mv |
AT acostarodriguezgabriel nonhomogeneousneumannproblemforthepoissonequationindomainswithanexternalcusp AT armentanomariagabriela nonhomogeneousneumannproblemforthepoissonequationindomainswithanexternalcusp AT duranricardoguillermo nonhomogeneousneumannproblemforthepoissonequationindomainswithanexternalcusp AT lombardiariell nonhomogeneousneumannproblemforthepoissonequationindomainswithanexternalcusp |
_version_ |
1768546662495551488 |