Prime spectra of lattice-ordered abelian groups

We prove that for each ℓ-group G, the topological space Spec(G) satisfies a condition Idω. Generalising a previous construction of Delzell and Madden we show that for each nondenumerable cardinal there is a completely normal spectral space that is not homeomorphic to Spec(G) for any ℓ-group G. We sh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gluschankof, Daniel A.
Publicado: 1999
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224049_v136_n3_p217_Cignoli
http://hdl.handle.net/20.500.12110/paper_00224049_v136_n3_p217_Cignoli
Aporte de:
id paper:paper_00224049_v136_n3_p217_Cignoli
record_format dspace
spelling paper:paper_00224049_v136_n3_p217_Cignoli2023-06-08T14:50:34Z Prime spectra of lattice-ordered abelian groups Gluschankof, Daniel A. We prove that for each ℓ-group G, the topological space Spec(G) satisfies a condition Idω. Generalising a previous construction of Delzell and Madden we show that for each nondenumerable cardinal there is a completely normal spectral space that is not homeomorphic to Spec(G) for any ℓ-group G. We show also that a stronger form of property Idω, called Id, suffices to ensure that a completely normal spectral space is homeomorphic to Spec(G) for some ℓ-group G. © 1999 Elsevier Science B.V. All rights reserved. Fil:Gluschankof, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1999 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224049_v136_n3_p217_Cignoli http://hdl.handle.net/20.500.12110/paper_00224049_v136_n3_p217_Cignoli
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We prove that for each ℓ-group G, the topological space Spec(G) satisfies a condition Idω. Generalising a previous construction of Delzell and Madden we show that for each nondenumerable cardinal there is a completely normal spectral space that is not homeomorphic to Spec(G) for any ℓ-group G. We show also that a stronger form of property Idω, called Id, suffices to ensure that a completely normal spectral space is homeomorphic to Spec(G) for some ℓ-group G. © 1999 Elsevier Science B.V. All rights reserved.
author Gluschankof, Daniel A.
spellingShingle Gluschankof, Daniel A.
Prime spectra of lattice-ordered abelian groups
author_facet Gluschankof, Daniel A.
author_sort Gluschankof, Daniel A.
title Prime spectra of lattice-ordered abelian groups
title_short Prime spectra of lattice-ordered abelian groups
title_full Prime spectra of lattice-ordered abelian groups
title_fullStr Prime spectra of lattice-ordered abelian groups
title_full_unstemmed Prime spectra of lattice-ordered abelian groups
title_sort prime spectra of lattice-ordered abelian groups
publishDate 1999
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224049_v136_n3_p217_Cignoli
http://hdl.handle.net/20.500.12110/paper_00224049_v136_n3_p217_Cignoli
work_keys_str_mv AT gluschankofdaniela primespectraoflatticeorderedabeliangroups
_version_ 1768542254585085952