Prime spectra of lattice-ordered abelian groups
We prove that for each ℓ-group G, the topological space Spec(G) satisfies a condition Idω. Generalising a previous construction of Delzell and Madden we show that for each nondenumerable cardinal there is a completely normal spectral space that is not homeomorphic to Spec(G) for any ℓ-group G. We sh...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
1999
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224049_v136_n3_p217_Cignoli http://hdl.handle.net/20.500.12110/paper_00224049_v136_n3_p217_Cignoli |
Aporte de: |
id |
paper:paper_00224049_v136_n3_p217_Cignoli |
---|---|
record_format |
dspace |
spelling |
paper:paper_00224049_v136_n3_p217_Cignoli2023-06-08T14:50:34Z Prime spectra of lattice-ordered abelian groups Gluschankof, Daniel A. We prove that for each ℓ-group G, the topological space Spec(G) satisfies a condition Idω. Generalising a previous construction of Delzell and Madden we show that for each nondenumerable cardinal there is a completely normal spectral space that is not homeomorphic to Spec(G) for any ℓ-group G. We show also that a stronger form of property Idω, called Id, suffices to ensure that a completely normal spectral space is homeomorphic to Spec(G) for some ℓ-group G. © 1999 Elsevier Science B.V. All rights reserved. Fil:Gluschankof, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1999 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224049_v136_n3_p217_Cignoli http://hdl.handle.net/20.500.12110/paper_00224049_v136_n3_p217_Cignoli |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We prove that for each ℓ-group G, the topological space Spec(G) satisfies a condition Idω. Generalising a previous construction of Delzell and Madden we show that for each nondenumerable cardinal there is a completely normal spectral space that is not homeomorphic to Spec(G) for any ℓ-group G. We show also that a stronger form of property Idω, called Id, suffices to ensure that a completely normal spectral space is homeomorphic to Spec(G) for some ℓ-group G. © 1999 Elsevier Science B.V. All rights reserved. |
author |
Gluschankof, Daniel A. |
spellingShingle |
Gluschankof, Daniel A. Prime spectra of lattice-ordered abelian groups |
author_facet |
Gluschankof, Daniel A. |
author_sort |
Gluschankof, Daniel A. |
title |
Prime spectra of lattice-ordered abelian groups |
title_short |
Prime spectra of lattice-ordered abelian groups |
title_full |
Prime spectra of lattice-ordered abelian groups |
title_fullStr |
Prime spectra of lattice-ordered abelian groups |
title_full_unstemmed |
Prime spectra of lattice-ordered abelian groups |
title_sort |
prime spectra of lattice-ordered abelian groups |
publishDate |
1999 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224049_v136_n3_p217_Cignoli http://hdl.handle.net/20.500.12110/paper_00224049_v136_n3_p217_Cignoli |
work_keys_str_mv |
AT gluschankofdaniela primespectraoflatticeorderedabeliangroups |
_version_ |
1768542254585085952 |