Centralisers of spaces of symmetric tensor products and applications

We show that the centraliser of the space of n-fold symmetric injective tensors, n ≥ 2, on a real Banach space is trivial. With a geometric condition on the set of extreme points of its dual, the space of integral polynomials we obtain the same result for complex Banach spaces. We give some applicat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lassalle, Silvia Beatriz
Publicado: 2006
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255874_v254_n3_p539_Boyd
http://hdl.handle.net/20.500.12110/paper_00255874_v254_n3_p539_Boyd
Aporte de:
id paper:paper_00255874_v254_n3_p539_Boyd
record_format dspace
spelling paper:paper_00255874_v254_n3_p539_Boyd2023-06-08T14:53:23Z Centralisers of spaces of symmetric tensor products and applications Lassalle, Silvia Beatriz We show that the centraliser of the space of n-fold symmetric injective tensors, n ≥ 2, on a real Banach space is trivial. With a geometric condition on the set of extreme points of its dual, the space of integral polynomials we obtain the same result for complex Banach spaces. We give some applications of this results to centralisers of spaces of homogeneous polynomials and complex Banach spaces. In addition, we derive a Banach-Stone Theorem for spaces of vector-valued approximable polynomials. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2006 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255874_v254_n3_p539_Boyd http://hdl.handle.net/20.500.12110/paper_00255874_v254_n3_p539_Boyd
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We show that the centraliser of the space of n-fold symmetric injective tensors, n ≥ 2, on a real Banach space is trivial. With a geometric condition on the set of extreme points of its dual, the space of integral polynomials we obtain the same result for complex Banach spaces. We give some applications of this results to centralisers of spaces of homogeneous polynomials and complex Banach spaces. In addition, we derive a Banach-Stone Theorem for spaces of vector-valued approximable polynomials.
author Lassalle, Silvia Beatriz
spellingShingle Lassalle, Silvia Beatriz
Centralisers of spaces of symmetric tensor products and applications
author_facet Lassalle, Silvia Beatriz
author_sort Lassalle, Silvia Beatriz
title Centralisers of spaces of symmetric tensor products and applications
title_short Centralisers of spaces of symmetric tensor products and applications
title_full Centralisers of spaces of symmetric tensor products and applications
title_fullStr Centralisers of spaces of symmetric tensor products and applications
title_full_unstemmed Centralisers of spaces of symmetric tensor products and applications
title_sort centralisers of spaces of symmetric tensor products and applications
publishDate 2006
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255874_v254_n3_p539_Boyd
http://hdl.handle.net/20.500.12110/paper_00255874_v254_n3_p539_Boyd
work_keys_str_mv AT lassallesilviabeatriz centralisersofspacesofsymmetrictensorproductsandapplications
_version_ 1768542974883397632