Spectral sets as Banach manifolds

Let A be a commutative Banach algebra, X its spectrum, and M a closed analytic submanifold of an open set in Cn. We may consider the set of germs of holomorphic functions from X to M, O(X, M). Now let v be the functional calculus homomorphism from O(X, Cn) to An, and AM = v(O(X, M)). It is proven th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Larotonda, Angel Rafael, Zalduendo, Ignacio Martín
Publicado: 1985
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00308730_v120_n2_p401_Larotonda
http://hdl.handle.net/20.500.12110/paper_00308730_v120_n2_p401_Larotonda
Aporte de:
id paper:paper_00308730_v120_n2_p401_Larotonda
record_format dspace
spelling paper:paper_00308730_v120_n2_p401_Larotonda2023-06-08T14:56:32Z Spectral sets as Banach manifolds Larotonda, Angel Rafael Zalduendo, Ignacio Martín Let A be a commutative Banach algebra, X its spectrum, and M a closed analytic submanifold of an open set in Cn. We may consider the set of germs of holomorphic functions from X to M, O(X, M). Now let v be the functional calculus homomorphism from O(X, Cn) to An, and AM = v(O(X, M)). It is proven that AM is an analytic submanifold of An, modeled on protective A-modules of rank = dim M. © 1985 by Pacific Journal of Mathematics. Fil:Larotonda, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Zalduendo, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1985 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00308730_v120_n2_p401_Larotonda http://hdl.handle.net/20.500.12110/paper_00308730_v120_n2_p401_Larotonda
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Let A be a commutative Banach algebra, X its spectrum, and M a closed analytic submanifold of an open set in Cn. We may consider the set of germs of holomorphic functions from X to M, O(X, M). Now let v be the functional calculus homomorphism from O(X, Cn) to An, and AM = v(O(X, M)). It is proven that AM is an analytic submanifold of An, modeled on protective A-modules of rank = dim M. © 1985 by Pacific Journal of Mathematics.
author Larotonda, Angel Rafael
Zalduendo, Ignacio Martín
spellingShingle Larotonda, Angel Rafael
Zalduendo, Ignacio Martín
Spectral sets as Banach manifolds
author_facet Larotonda, Angel Rafael
Zalduendo, Ignacio Martín
author_sort Larotonda, Angel Rafael
title Spectral sets as Banach manifolds
title_short Spectral sets as Banach manifolds
title_full Spectral sets as Banach manifolds
title_fullStr Spectral sets as Banach manifolds
title_full_unstemmed Spectral sets as Banach manifolds
title_sort spectral sets as banach manifolds
publishDate 1985
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00308730_v120_n2_p401_Larotonda
http://hdl.handle.net/20.500.12110/paper_00308730_v120_n2_p401_Larotonda
work_keys_str_mv AT larotondaangelrafael spectralsetsasbanachmanifolds
AT zalduendoignaciomartin spectralsetsasbanachmanifolds
_version_ 1768544768293339136