Spectral sets as Banach manifolds
Let A be a commutative Banach algebra, X its spectrum, and M a closed analytic submanifold of an open set in Cn. We may consider the set of germs of holomorphic functions from X to M, O(X, M). Now let v be the functional calculus homomorphism from O(X, Cn) to An, and AM = v(O(X, M)). It is proven th...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
1985
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00308730_v120_n2_p401_Larotonda http://hdl.handle.net/20.500.12110/paper_00308730_v120_n2_p401_Larotonda |
Aporte de: |
id |
paper:paper_00308730_v120_n2_p401_Larotonda |
---|---|
record_format |
dspace |
spelling |
paper:paper_00308730_v120_n2_p401_Larotonda2023-06-08T14:56:32Z Spectral sets as Banach manifolds Larotonda, Angel Rafael Zalduendo, Ignacio Martín Let A be a commutative Banach algebra, X its spectrum, and M a closed analytic submanifold of an open set in Cn. We may consider the set of germs of holomorphic functions from X to M, O(X, M). Now let v be the functional calculus homomorphism from O(X, Cn) to An, and AM = v(O(X, M)). It is proven that AM is an analytic submanifold of An, modeled on protective A-modules of rank = dim M. © 1985 by Pacific Journal of Mathematics. Fil:Larotonda, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Zalduendo, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1985 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00308730_v120_n2_p401_Larotonda http://hdl.handle.net/20.500.12110/paper_00308730_v120_n2_p401_Larotonda |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
Let A be a commutative Banach algebra, X its spectrum, and M a closed analytic submanifold of an open set in Cn. We may consider the set of germs of holomorphic functions from X to M, O(X, M). Now let v be the functional calculus homomorphism from O(X, Cn) to An, and AM = v(O(X, M)). It is proven that AM is an analytic submanifold of An, modeled on protective A-modules of rank = dim M. © 1985 by Pacific Journal of Mathematics. |
author |
Larotonda, Angel Rafael Zalduendo, Ignacio Martín |
spellingShingle |
Larotonda, Angel Rafael Zalduendo, Ignacio Martín Spectral sets as Banach manifolds |
author_facet |
Larotonda, Angel Rafael Zalduendo, Ignacio Martín |
author_sort |
Larotonda, Angel Rafael |
title |
Spectral sets as Banach manifolds |
title_short |
Spectral sets as Banach manifolds |
title_full |
Spectral sets as Banach manifolds |
title_fullStr |
Spectral sets as Banach manifolds |
title_full_unstemmed |
Spectral sets as Banach manifolds |
title_sort |
spectral sets as banach manifolds |
publishDate |
1985 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00308730_v120_n2_p401_Larotonda http://hdl.handle.net/20.500.12110/paper_00308730_v120_n2_p401_Larotonda |
work_keys_str_mv |
AT larotondaangelrafael spectralsetsasbanachmanifolds AT zalduendoignaciomartin spectralsetsasbanachmanifolds |
_version_ |
1768544768293339136 |