Entanglement-Enhanced Phase Estimation without Prior Phase Information

We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of Rb87 atoms with a Poisson distributed atom number. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the Fy and Fz com...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Puentes, Graciana
Publicado: 2017
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v118_n23_p_Colangelo
http://hdl.handle.net/20.500.12110/paper_00319007_v118_n23_p_Colangelo
Aporte de:
id paper:paper_00319007_v118_n23_p_Colangelo
record_format dspace
spelling paper:paper_00319007_v118_n23_p_Colangelo2023-06-08T14:58:20Z Entanglement-Enhanced Phase Estimation without Prior Phase Information Puentes, Graciana Atoms Covariance matrix Phase estimation Phase information Prior knowledge QND measurements Quantum nondemolition measurements Single components Spin squeezing inequalities Squeezed state Quantum theory We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of Rb87 atoms with a Poisson distributed atom number. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the Fy and Fz components of the PQS states, revealing the dual squeezing characteristic of PQS states. PQS states have been proposed for single-shot phase estimation without prior knowledge of the likely values of the phase. We show that for an arbitrary phase, the generated PQS states can give a metrological advantage of at least 3.1 dB relative to classical states. The PQS state also beats, for most phase angles, single-component-squeezed states generated by QND measurement with the same resources and atom number statistics. Using spin squeezing inequalities, we show that spin-spin entanglement is responsible for the metrological advantage. © 2017 American Physical Society. Fil:Puentes, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2017 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v118_n23_p_Colangelo http://hdl.handle.net/20.500.12110/paper_00319007_v118_n23_p_Colangelo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Atoms
Covariance matrix
Phase estimation
Phase information
Prior knowledge
QND measurements
Quantum nondemolition measurements
Single components
Spin squeezing inequalities
Squeezed state
Quantum theory
spellingShingle Atoms
Covariance matrix
Phase estimation
Phase information
Prior knowledge
QND measurements
Quantum nondemolition measurements
Single components
Spin squeezing inequalities
Squeezed state
Quantum theory
Puentes, Graciana
Entanglement-Enhanced Phase Estimation without Prior Phase Information
topic_facet Atoms
Covariance matrix
Phase estimation
Phase information
Prior knowledge
QND measurements
Quantum nondemolition measurements
Single components
Spin squeezing inequalities
Squeezed state
Quantum theory
description We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of Rb87 atoms with a Poisson distributed atom number. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the Fy and Fz components of the PQS states, revealing the dual squeezing characteristic of PQS states. PQS states have been proposed for single-shot phase estimation without prior knowledge of the likely values of the phase. We show that for an arbitrary phase, the generated PQS states can give a metrological advantage of at least 3.1 dB relative to classical states. The PQS state also beats, for most phase angles, single-component-squeezed states generated by QND measurement with the same resources and atom number statistics. Using spin squeezing inequalities, we show that spin-spin entanglement is responsible for the metrological advantage. © 2017 American Physical Society.
author Puentes, Graciana
author_facet Puentes, Graciana
author_sort Puentes, Graciana
title Entanglement-Enhanced Phase Estimation without Prior Phase Information
title_short Entanglement-Enhanced Phase Estimation without Prior Phase Information
title_full Entanglement-Enhanced Phase Estimation without Prior Phase Information
title_fullStr Entanglement-Enhanced Phase Estimation without Prior Phase Information
title_full_unstemmed Entanglement-Enhanced Phase Estimation without Prior Phase Information
title_sort entanglement-enhanced phase estimation without prior phase information
publishDate 2017
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v118_n23_p_Colangelo
http://hdl.handle.net/20.500.12110/paper_00319007_v118_n23_p_Colangelo
work_keys_str_mv AT puentesgraciana entanglementenhancedphaseestimationwithoutpriorphaseinformation
_version_ 1768545363311984640