Ergodic properties of linear operators

Let T be a bounded linear operator on a Banach space X. We prove some properties of X1 = {z ( X: limnn∑k=1 Tkz/k exists} and we construct an operator T such that limnTn/n = 0, but (I - T)X is not included in X1.

Guardado en:
Detalles Bibliográficos
Autor principal: Becker, María Elena
Publicado: 2011
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00416932_v52_n1_p23_Becker
http://hdl.handle.net/20.500.12110/paper_00416932_v52_n1_p23_Becker
Aporte de:
Descripción
Sumario:Let T be a bounded linear operator on a Banach space X. We prove some properties of X1 = {z ( X: limnn∑k=1 Tkz/k exists} and we construct an operator T such that limnTn/n = 0, but (I - T)X is not included in X1.