The quasi-state space of a C*-algebra is a topological quotient of the representation space

We show that for any C*-algebra A, a sufficiently large Hilbert space H and a unit vector ξ ∈ H, the natural application rep , π〈 π(-)ξ,ξ〉 is a topological quotient, where rep(A:H) is the space of representations on H and Q(A) the set of quasi-states, i.e. positive linear functionals with norm at mo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Yuhjtman, Sergio A.
Publicado: 2015
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00416932_v56_n2_p57_Yuhjtman
http://hdl.handle.net/20.500.12110/paper_00416932_v56_n2_p57_Yuhjtman
Aporte de:
id paper:paper_00416932_v56_n2_p57_Yuhjtman
record_format dspace
spelling paper:paper_00416932_v56_n2_p57_Yuhjtman2023-06-08T15:04:48Z The quasi-state space of a C*-algebra is a topological quotient of the representation space Yuhjtman, Sergio A. We show that for any C*-algebra A, a sufficiently large Hilbert space H and a unit vector ξ ∈ H, the natural application rep , π〈 π(-)ξ,ξ〉 is a topological quotient, where rep(A:H) is the space of representations on H and Q(A) the set of quasi-states, i.e. positive linear functionals with norm at most 1. This quotient might be a useful tool in the representation theory of C*-algebras. We apply it to give an interesting proof of Takesaki-Bichteler duality for C*-algebras which allows to drop a hypothesis. Fil:Yuhjtman, S.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2015 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00416932_v56_n2_p57_Yuhjtman http://hdl.handle.net/20.500.12110/paper_00416932_v56_n2_p57_Yuhjtman
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We show that for any C*-algebra A, a sufficiently large Hilbert space H and a unit vector ξ ∈ H, the natural application rep , π〈 π(-)ξ,ξ〉 is a topological quotient, where rep(A:H) is the space of representations on H and Q(A) the set of quasi-states, i.e. positive linear functionals with norm at most 1. This quotient might be a useful tool in the representation theory of C*-algebras. We apply it to give an interesting proof of Takesaki-Bichteler duality for C*-algebras which allows to drop a hypothesis.
author Yuhjtman, Sergio A.
spellingShingle Yuhjtman, Sergio A.
The quasi-state space of a C*-algebra is a topological quotient of the representation space
author_facet Yuhjtman, Sergio A.
author_sort Yuhjtman, Sergio A.
title The quasi-state space of a C*-algebra is a topological quotient of the representation space
title_short The quasi-state space of a C*-algebra is a topological quotient of the representation space
title_full The quasi-state space of a C*-algebra is a topological quotient of the representation space
title_fullStr The quasi-state space of a C*-algebra is a topological quotient of the representation space
title_full_unstemmed The quasi-state space of a C*-algebra is a topological quotient of the representation space
title_sort quasi-state space of a c*-algebra is a topological quotient of the representation space
publishDate 2015
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00416932_v56_n2_p57_Yuhjtman
http://hdl.handle.net/20.500.12110/paper_00416932_v56_n2_p57_Yuhjtman
work_keys_str_mv AT yuhjtmansergioa thequasistatespaceofacalgebraisatopologicalquotientoftherepresentationspace
AT yuhjtmansergioa quasistatespaceofacalgebraisatopologicalquotientoftherepresentationspace
_version_ 1768542827890868224