A polyhedral study of the maximum edge subgraph problem

The study of cohesive subgroups is an important aspect of social network analysis. Cohesive subgroups are studied using different relaxations of the notion of clique in a graph. For instance, given a graph and an integer k, the maximum edge subgraph problem consists of finding a k-vertex subset such...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bonomo, Flavia, Marenco, Javier Leonardo, Sabán, Daniela, Stier Moses, Nicolás E.
Publicado: 2012
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v160_n18_p2573_Bonomo
http://hdl.handle.net/20.500.12110/paper_0166218X_v160_n18_p2573_Bonomo
Aporte de:
id paper:paper_0166218X_v160_n18_p2573_Bonomo
record_format dspace
spelling paper:paper_0166218X_v160_n18_p2573_Bonomo2025-07-30T17:54:23Z A polyhedral study of the maximum edge subgraph problem Bonomo, Flavia Marenco, Javier Leonardo Sabán, Daniela Stier Moses, Nicolás E. Maximum edge subgraph problem Polyhedral combinatorics Quasi-cliques Branch-and-cut algorithms Computational studies Integer programming formulations Polyhedral approach Polyhedral combinatorics Polyhedral studies Polytopes Quasi-cliques Separation problems Social Network Analysis Subgraph problems Valid inequality Integer programming Linear programming Social networking (online) Computational complexity The study of cohesive subgroups is an important aspect of social network analysis. Cohesive subgroups are studied using different relaxations of the notion of clique in a graph. For instance, given a graph and an integer k, the maximum edge subgraph problem consists of finding a k-vertex subset such that the number of edges within the subset is maximum. This work proposes a polyhedral approach for this NP-hard problem. We study the polytope associated to an integer programming formulation of the problem, present several families of facet-inducing valid inequalities, and discuss the separation problem associated to these families. Finally, we implement a branch and cut algorithm for this problem. This computational study illustrates the effectiveness of the classes of inequalities presented in this work. © 2011 Elsevier B.V. All rights reserved. Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Saban, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Stier-Moses, N.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2012 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v160_n18_p2573_Bonomo http://hdl.handle.net/20.500.12110/paper_0166218X_v160_n18_p2573_Bonomo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Maximum edge subgraph problem
Polyhedral combinatorics
Quasi-cliques
Branch-and-cut algorithms
Computational studies
Integer programming formulations
Polyhedral approach
Polyhedral combinatorics
Polyhedral studies
Polytopes
Quasi-cliques
Separation problems
Social Network Analysis
Subgraph problems
Valid inequality
Integer programming
Linear programming
Social networking (online)
Computational complexity
spellingShingle Maximum edge subgraph problem
Polyhedral combinatorics
Quasi-cliques
Branch-and-cut algorithms
Computational studies
Integer programming formulations
Polyhedral approach
Polyhedral combinatorics
Polyhedral studies
Polytopes
Quasi-cliques
Separation problems
Social Network Analysis
Subgraph problems
Valid inequality
Integer programming
Linear programming
Social networking (online)
Computational complexity
Bonomo, Flavia
Marenco, Javier Leonardo
Sabán, Daniela
Stier Moses, Nicolás E.
A polyhedral study of the maximum edge subgraph problem
topic_facet Maximum edge subgraph problem
Polyhedral combinatorics
Quasi-cliques
Branch-and-cut algorithms
Computational studies
Integer programming formulations
Polyhedral approach
Polyhedral combinatorics
Polyhedral studies
Polytopes
Quasi-cliques
Separation problems
Social Network Analysis
Subgraph problems
Valid inequality
Integer programming
Linear programming
Social networking (online)
Computational complexity
description The study of cohesive subgroups is an important aspect of social network analysis. Cohesive subgroups are studied using different relaxations of the notion of clique in a graph. For instance, given a graph and an integer k, the maximum edge subgraph problem consists of finding a k-vertex subset such that the number of edges within the subset is maximum. This work proposes a polyhedral approach for this NP-hard problem. We study the polytope associated to an integer programming formulation of the problem, present several families of facet-inducing valid inequalities, and discuss the separation problem associated to these families. Finally, we implement a branch and cut algorithm for this problem. This computational study illustrates the effectiveness of the classes of inequalities presented in this work. © 2011 Elsevier B.V. All rights reserved.
author Bonomo, Flavia
Marenco, Javier Leonardo
Sabán, Daniela
Stier Moses, Nicolás E.
author_facet Bonomo, Flavia
Marenco, Javier Leonardo
Sabán, Daniela
Stier Moses, Nicolás E.
author_sort Bonomo, Flavia
title A polyhedral study of the maximum edge subgraph problem
title_short A polyhedral study of the maximum edge subgraph problem
title_full A polyhedral study of the maximum edge subgraph problem
title_fullStr A polyhedral study of the maximum edge subgraph problem
title_full_unstemmed A polyhedral study of the maximum edge subgraph problem
title_sort polyhedral study of the maximum edge subgraph problem
publishDate 2012
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v160_n18_p2573_Bonomo
http://hdl.handle.net/20.500.12110/paper_0166218X_v160_n18_p2573_Bonomo
work_keys_str_mv AT bonomoflavia apolyhedralstudyofthemaximumedgesubgraphproblem
AT marencojavierleonardo apolyhedralstudyofthemaximumedgesubgraphproblem
AT sabandaniela apolyhedralstudyofthemaximumedgesubgraphproblem
AT stiermosesnicolase apolyhedralstudyofthemaximumedgesubgraphproblem
AT bonomoflavia polyhedralstudyofthemaximumedgesubgraphproblem
AT marencojavierleonardo polyhedralstudyofthemaximumedgesubgraphproblem
AT sabandaniela polyhedralstudyofthemaximumedgesubgraphproblem
AT stiermosesnicolase polyhedralstudyofthemaximumedgesubgraphproblem
_version_ 1840322699214192640