A polyhedral study of the maximum edge subgraph problem
The study of cohesive subgroups is an important aspect of social network analysis. Cohesive subgroups are studied using different relaxations of the notion of clique in a graph. For instance, given a graph and an integer k, the maximum edge subgraph problem consists of finding a k-vertex subset such...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Publicado: |
2012
|
| Materias: | |
| Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v160_n18_p2573_Bonomo http://hdl.handle.net/20.500.12110/paper_0166218X_v160_n18_p2573_Bonomo |
| Aporte de: |
| id |
paper:paper_0166218X_v160_n18_p2573_Bonomo |
|---|---|
| record_format |
dspace |
| spelling |
paper:paper_0166218X_v160_n18_p2573_Bonomo2025-07-30T17:54:23Z A polyhedral study of the maximum edge subgraph problem Bonomo, Flavia Marenco, Javier Leonardo Sabán, Daniela Stier Moses, Nicolás E. Maximum edge subgraph problem Polyhedral combinatorics Quasi-cliques Branch-and-cut algorithms Computational studies Integer programming formulations Polyhedral approach Polyhedral combinatorics Polyhedral studies Polytopes Quasi-cliques Separation problems Social Network Analysis Subgraph problems Valid inequality Integer programming Linear programming Social networking (online) Computational complexity The study of cohesive subgroups is an important aspect of social network analysis. Cohesive subgroups are studied using different relaxations of the notion of clique in a graph. For instance, given a graph and an integer k, the maximum edge subgraph problem consists of finding a k-vertex subset such that the number of edges within the subset is maximum. This work proposes a polyhedral approach for this NP-hard problem. We study the polytope associated to an integer programming formulation of the problem, present several families of facet-inducing valid inequalities, and discuss the separation problem associated to these families. Finally, we implement a branch and cut algorithm for this problem. This computational study illustrates the effectiveness of the classes of inequalities presented in this work. © 2011 Elsevier B.V. All rights reserved. Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Marenco, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Saban, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Stier-Moses, N.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2012 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v160_n18_p2573_Bonomo http://hdl.handle.net/20.500.12110/paper_0166218X_v160_n18_p2573_Bonomo |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-134 |
| collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
| topic |
Maximum edge subgraph problem Polyhedral combinatorics Quasi-cliques Branch-and-cut algorithms Computational studies Integer programming formulations Polyhedral approach Polyhedral combinatorics Polyhedral studies Polytopes Quasi-cliques Separation problems Social Network Analysis Subgraph problems Valid inequality Integer programming Linear programming Social networking (online) Computational complexity |
| spellingShingle |
Maximum edge subgraph problem Polyhedral combinatorics Quasi-cliques Branch-and-cut algorithms Computational studies Integer programming formulations Polyhedral approach Polyhedral combinatorics Polyhedral studies Polytopes Quasi-cliques Separation problems Social Network Analysis Subgraph problems Valid inequality Integer programming Linear programming Social networking (online) Computational complexity Bonomo, Flavia Marenco, Javier Leonardo Sabán, Daniela Stier Moses, Nicolás E. A polyhedral study of the maximum edge subgraph problem |
| topic_facet |
Maximum edge subgraph problem Polyhedral combinatorics Quasi-cliques Branch-and-cut algorithms Computational studies Integer programming formulations Polyhedral approach Polyhedral combinatorics Polyhedral studies Polytopes Quasi-cliques Separation problems Social Network Analysis Subgraph problems Valid inequality Integer programming Linear programming Social networking (online) Computational complexity |
| description |
The study of cohesive subgroups is an important aspect of social network analysis. Cohesive subgroups are studied using different relaxations of the notion of clique in a graph. For instance, given a graph and an integer k, the maximum edge subgraph problem consists of finding a k-vertex subset such that the number of edges within the subset is maximum. This work proposes a polyhedral approach for this NP-hard problem. We study the polytope associated to an integer programming formulation of the problem, present several families of facet-inducing valid inequalities, and discuss the separation problem associated to these families. Finally, we implement a branch and cut algorithm for this problem. This computational study illustrates the effectiveness of the classes of inequalities presented in this work. © 2011 Elsevier B.V. All rights reserved. |
| author |
Bonomo, Flavia Marenco, Javier Leonardo Sabán, Daniela Stier Moses, Nicolás E. |
| author_facet |
Bonomo, Flavia Marenco, Javier Leonardo Sabán, Daniela Stier Moses, Nicolás E. |
| author_sort |
Bonomo, Flavia |
| title |
A polyhedral study of the maximum edge subgraph problem |
| title_short |
A polyhedral study of the maximum edge subgraph problem |
| title_full |
A polyhedral study of the maximum edge subgraph problem |
| title_fullStr |
A polyhedral study of the maximum edge subgraph problem |
| title_full_unstemmed |
A polyhedral study of the maximum edge subgraph problem |
| title_sort |
polyhedral study of the maximum edge subgraph problem |
| publishDate |
2012 |
| url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v160_n18_p2573_Bonomo http://hdl.handle.net/20.500.12110/paper_0166218X_v160_n18_p2573_Bonomo |
| work_keys_str_mv |
AT bonomoflavia apolyhedralstudyofthemaximumedgesubgraphproblem AT marencojavierleonardo apolyhedralstudyofthemaximumedgesubgraphproblem AT sabandaniela apolyhedralstudyofthemaximumedgesubgraphproblem AT stiermosesnicolase apolyhedralstudyofthemaximumedgesubgraphproblem AT bonomoflavia polyhedralstudyofthemaximumedgesubgraphproblem AT marencojavierleonardo polyhedralstudyofthemaximumedgesubgraphproblem AT sabandaniela polyhedralstudyofthemaximumedgesubgraphproblem AT stiermosesnicolase polyhedralstudyofthemaximumedgesubgraphproblem |
| _version_ |
1840322699214192640 |