Computing the P 3 -hull number of a graph, a polyhedral approach
A subset S of vertices of a graph G=(V,E) is P 3 -convex if every simple path of three vertices starting and ending in S is contained in S. The P 3 -convex hull of S is the smallest P 3 -convex set containing S and the P 3 -hull number of G is the minimum number of vertices of a subset S such that i...
Guardado en:
| Publicado: |
2019
|
|---|---|
| Materias: | |
| Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v255_n_p155_Blaum http://hdl.handle.net/20.500.12110/paper_0166218X_v255_n_p155_Blaum |
| Aporte de: |
| id |
paper:paper_0166218X_v255_n_p155_Blaum |
|---|---|
| record_format |
dspace |
| spelling |
paper:paper_0166218X_v255_n_p155_Blaum2025-07-30T17:54:28Z Computing the P 3 -hull number of a graph, a polyhedral approach Combinatorial optimization Discrete convexity Facet-defining inequalities Hull number Combinatorial optimization Computational geometry Set theory Convex hull Convex set Discrete convexity Facet-defining inequalities Hull number NP-hard Polyhedral approach Polytopes Graph theory A subset S of vertices of a graph G=(V,E) is P 3 -convex if every simple path of three vertices starting and ending in S is contained in S. The P 3 -convex hull of S is the smallest P 3 -convex set containing S and the P 3 -hull number of G is the minimum number of vertices of a subset S such that its convex hull is V. It is a known fact that the calculation of the P 3 -hull number of a graph is NP-hard. In the present work we start the study of this problem from a polyhedral point of view, that is, we pose it as a binary IP problem and we study the associated polytope by exploring several families of facet-defining inequalities. © 2018 Elsevier B.V. 2019 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v255_n_p155_Blaum http://hdl.handle.net/20.500.12110/paper_0166218X_v255_n_p155_Blaum |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-134 |
| collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
| topic |
Combinatorial optimization Discrete convexity Facet-defining inequalities Hull number Combinatorial optimization Computational geometry Set theory Convex hull Convex set Discrete convexity Facet-defining inequalities Hull number NP-hard Polyhedral approach Polytopes Graph theory |
| spellingShingle |
Combinatorial optimization Discrete convexity Facet-defining inequalities Hull number Combinatorial optimization Computational geometry Set theory Convex hull Convex set Discrete convexity Facet-defining inequalities Hull number NP-hard Polyhedral approach Polytopes Graph theory Computing the P 3 -hull number of a graph, a polyhedral approach |
| topic_facet |
Combinatorial optimization Discrete convexity Facet-defining inequalities Hull number Combinatorial optimization Computational geometry Set theory Convex hull Convex set Discrete convexity Facet-defining inequalities Hull number NP-hard Polyhedral approach Polytopes Graph theory |
| description |
A subset S of vertices of a graph G=(V,E) is P 3 -convex if every simple path of three vertices starting and ending in S is contained in S. The P 3 -convex hull of S is the smallest P 3 -convex set containing S and the P 3 -hull number of G is the minimum number of vertices of a subset S such that its convex hull is V. It is a known fact that the calculation of the P 3 -hull number of a graph is NP-hard. In the present work we start the study of this problem from a polyhedral point of view, that is, we pose it as a binary IP problem and we study the associated polytope by exploring several families of facet-defining inequalities. © 2018 Elsevier B.V. |
| title |
Computing the P 3 -hull number of a graph, a polyhedral approach |
| title_short |
Computing the P 3 -hull number of a graph, a polyhedral approach |
| title_full |
Computing the P 3 -hull number of a graph, a polyhedral approach |
| title_fullStr |
Computing the P 3 -hull number of a graph, a polyhedral approach |
| title_full_unstemmed |
Computing the P 3 -hull number of a graph, a polyhedral approach |
| title_sort |
computing the p 3 -hull number of a graph, a polyhedral approach |
| publishDate |
2019 |
| url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v255_n_p155_Blaum http://hdl.handle.net/20.500.12110/paper_0166218X_v255_n_p155_Blaum |
| _version_ |
1840321163360731136 |