Counting the changes of random Δ02 sets
Consider a Martin-Löf random Δ02 set Z. We give lower bounds for the number of changes of Zs|n for computable approximations of Z. We show that each nonempty Π0 1 class has a low member Z with a computable approximation that changes only o(2n ) times. We prove that each superlow ML-random set alread...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v6158LNCS_n_p162_Figueira http://hdl.handle.net/20.500.12110/paper_03029743_v6158LNCS_n_p162_Figueira |
Aporte de: |
id |
paper:paper_03029743_v6158LNCS_n_p162_Figueira |
---|---|
record_format |
dspace |
spelling |
paper:paper_03029743_v6158LNCS_n_p162_Figueira2023-06-08T15:28:36Z Counting the changes of random Δ02 sets Figueira, Santiago Daniel Lower bounds Random set Random processes Consider a Martin-Löf random Δ02 set Z. We give lower bounds for the number of changes of Zs|n for computable approximations of Z. We show that each nonempty Π0 1 class has a low member Z with a computable approximation that changes only o(2n ) times. We prove that each superlow ML-random set already satisfies a stronger randomness notion called balanced randomness, which implies that for each computable approximation and each constant c, there are infinitely many n such that Zs|n changes more than c2 n times. © 2010 Springer-Verlag Berlin Heidelberg. Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2010 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v6158LNCS_n_p162_Figueira http://hdl.handle.net/20.500.12110/paper_03029743_v6158LNCS_n_p162_Figueira |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Lower bounds Random set Random processes |
spellingShingle |
Lower bounds Random set Random processes Figueira, Santiago Daniel Counting the changes of random Δ02 sets |
topic_facet |
Lower bounds Random set Random processes |
description |
Consider a Martin-Löf random Δ02 set Z. We give lower bounds for the number of changes of Zs|n for computable approximations of Z. We show that each nonempty Π0 1 class has a low member Z with a computable approximation that changes only o(2n ) times. We prove that each superlow ML-random set already satisfies a stronger randomness notion called balanced randomness, which implies that for each computable approximation and each constant c, there are infinitely many n such that Zs|n changes more than c2 n times. © 2010 Springer-Verlag Berlin Heidelberg. |
author |
Figueira, Santiago Daniel |
author_facet |
Figueira, Santiago Daniel |
author_sort |
Figueira, Santiago Daniel |
title |
Counting the changes of random Δ02 sets |
title_short |
Counting the changes of random Δ02 sets |
title_full |
Counting the changes of random Δ02 sets |
title_fullStr |
Counting the changes of random Δ02 sets |
title_full_unstemmed |
Counting the changes of random Δ02 sets |
title_sort |
counting the changes of random δ02 sets |
publishDate |
2010 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03029743_v6158LNCS_n_p162_Figueira http://hdl.handle.net/20.500.12110/paper_03029743_v6158LNCS_n_p162_Figueira |
work_keys_str_mv |
AT figueirasantiagodaniel countingthechangesofrandomd02sets |
_version_ |
1768546348691357696 |