Fractional problems in thin domains

In this paper we consider nonlocal fractional problems in thin domains. Given open bounded subsets U⊂R n and V⊂R m , we show that the solution u ε to Δ x s u ε (x,y)+Δ y t u ε (x,y)=f(x,ε −1 y)inU×εV with u ε (x,y)=0 if x⁄∈U and y∈εV, verifies that ũ ε (x,y)≔u ε (x,εy)→u 0 strongly in the natural fr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2019
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v_n_p_Pereira
http://hdl.handle.net/20.500.12110/paper_0362546X_v_n_p_Pereira
Aporte de:
id paper:paper_0362546X_v_n_p_Pereira
record_format dspace
spelling paper:paper_0362546X_v_n_p_Pereira2023-06-08T15:35:24Z Fractional problems in thin domains Dirichlet problem Neumann problem Nonlocal fractional equations Thin domains Boundary value problems Dirichlet condition Dirichlet problem Fractional equation Fractional Laplacian Neumann problem Open bounded subsets Rate of convergence Thin domains Sobolev spaces In this paper we consider nonlocal fractional problems in thin domains. Given open bounded subsets U⊂R n and V⊂R m , we show that the solution u ε to Δ x s u ε (x,y)+Δ y t u ε (x,y)=f(x,ε −1 y)inU×εV with u ε (x,y)=0 if x⁄∈U and y∈εV, verifies that ũ ε (x,y)≔u ε (x,εy)→u 0 strongly in the natural fractional Sobolev space associated to this problem. We also identify the limit problem that is satisfied by u 0 and estimate the rate of convergence in the uniform norm. Here Δ x s u and Δ y t u are the fractional Laplacian in the 1st variable x (with a Dirichlet condition, u(x)=0 if x⁄∈U) and in the 2nd variable y (with a Neumann condition, integrating only inside V), respectively, that is, Δ x s u(x,y)=∫ R n [Formula presented]dw and Δ y t u(x,y)=∫ V [Formula presented]dz. © 2019 Elsevier Ltd 2019 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v_n_p_Pereira http://hdl.handle.net/20.500.12110/paper_0362546X_v_n_p_Pereira
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Dirichlet problem
Neumann problem
Nonlocal fractional equations
Thin domains
Boundary value problems
Dirichlet condition
Dirichlet problem
Fractional equation
Fractional Laplacian
Neumann problem
Open bounded subsets
Rate of convergence
Thin domains
Sobolev spaces
spellingShingle Dirichlet problem
Neumann problem
Nonlocal fractional equations
Thin domains
Boundary value problems
Dirichlet condition
Dirichlet problem
Fractional equation
Fractional Laplacian
Neumann problem
Open bounded subsets
Rate of convergence
Thin domains
Sobolev spaces
Fractional problems in thin domains
topic_facet Dirichlet problem
Neumann problem
Nonlocal fractional equations
Thin domains
Boundary value problems
Dirichlet condition
Dirichlet problem
Fractional equation
Fractional Laplacian
Neumann problem
Open bounded subsets
Rate of convergence
Thin domains
Sobolev spaces
description In this paper we consider nonlocal fractional problems in thin domains. Given open bounded subsets U⊂R n and V⊂R m , we show that the solution u ε to Δ x s u ε (x,y)+Δ y t u ε (x,y)=f(x,ε −1 y)inU×εV with u ε (x,y)=0 if x⁄∈U and y∈εV, verifies that ũ ε (x,y)≔u ε (x,εy)→u 0 strongly in the natural fractional Sobolev space associated to this problem. We also identify the limit problem that is satisfied by u 0 and estimate the rate of convergence in the uniform norm. Here Δ x s u and Δ y t u are the fractional Laplacian in the 1st variable x (with a Dirichlet condition, u(x)=0 if x⁄∈U) and in the 2nd variable y (with a Neumann condition, integrating only inside V), respectively, that is, Δ x s u(x,y)=∫ R n [Formula presented]dw and Δ y t u(x,y)=∫ V [Formula presented]dz. © 2019 Elsevier Ltd
title Fractional problems in thin domains
title_short Fractional problems in thin domains
title_full Fractional problems in thin domains
title_fullStr Fractional problems in thin domains
title_full_unstemmed Fractional problems in thin domains
title_sort fractional problems in thin domains
publishDate 2019
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v_n_p_Pereira
http://hdl.handle.net/20.500.12110/paper_0362546X_v_n_p_Pereira
_version_ 1768546161899077632