On intrinsic bounds in the Nullstellensatz
Let k be a field and f1 , . . . , fs be non constant polynomials in k[X1 , . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence f1 , . . . , fs: the geometric degree of the system. With this notion we can show the following effective Nullstell...
Guardado en:
Autores principales: | , , |
---|---|
Publicado: |
1997
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09381279_v8_n2_p125_Krick http://hdl.handle.net/20.500.12110/paper_09381279_v8_n2_p125_Krick |
Aporte de: |
id |
paper:paper_09381279_v8_n2_p125_Krick |
---|---|
record_format |
dspace |
spelling |
paper:paper_09381279_v8_n2_p125_Krick2023-06-08T15:53:23Z On intrinsic bounds in the Nullstellensatz Krick, Teresa Elena Genoveva Sabia, Juan Vicente Rafael Solerno, Pablo Luis Complete intersection polynomial ideals Effective Nullstellensatz Geometric degree Trace theory Functions Geometry Number theory Set theory Geometric degree Hilbert Nullstellensatz Trace theory Polynomials Let k be a field and f1 , . . . , fs be non constant polynomials in k[X1 , . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence f1 , . . . , fs: the geometric degree of the system. With this notion we can show the following effective Nullstellensatz: if δ denotes the geometric degree of the trivial system f1 , . . .. , fs and d:= maxjdeg(fj), then there exist polynomials p1 , . . . , ps ∈ k[X1 , . . . , Xn] such that 1 = ∑jpjfjand deg pjfj ≦ 3n2δd. Since the number δ is always bounded by (d + 1)n-1, one deduces a classical single exponential upper bound in terms of d and n, but in some cases our new bound improves the known ones. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1997 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09381279_v8_n2_p125_Krick http://hdl.handle.net/20.500.12110/paper_09381279_v8_n2_p125_Krick |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Complete intersection polynomial ideals Effective Nullstellensatz Geometric degree Trace theory Functions Geometry Number theory Set theory Geometric degree Hilbert Nullstellensatz Trace theory Polynomials |
spellingShingle |
Complete intersection polynomial ideals Effective Nullstellensatz Geometric degree Trace theory Functions Geometry Number theory Set theory Geometric degree Hilbert Nullstellensatz Trace theory Polynomials Krick, Teresa Elena Genoveva Sabia, Juan Vicente Rafael Solerno, Pablo Luis On intrinsic bounds in the Nullstellensatz |
topic_facet |
Complete intersection polynomial ideals Effective Nullstellensatz Geometric degree Trace theory Functions Geometry Number theory Set theory Geometric degree Hilbert Nullstellensatz Trace theory Polynomials |
description |
Let k be a field and f1 , . . . , fs be non constant polynomials in k[X1 , . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence f1 , . . . , fs: the geometric degree of the system. With this notion we can show the following effective Nullstellensatz: if δ denotes the geometric degree of the trivial system f1 , . . .. , fs and d:= maxjdeg(fj), then there exist polynomials p1 , . . . , ps ∈ k[X1 , . . . , Xn] such that 1 = ∑jpjfjand deg pjfj ≦ 3n2δd. Since the number δ is always bounded by (d + 1)n-1, one deduces a classical single exponential upper bound in terms of d and n, but in some cases our new bound improves the known ones. |
author |
Krick, Teresa Elena Genoveva Sabia, Juan Vicente Rafael Solerno, Pablo Luis |
author_facet |
Krick, Teresa Elena Genoveva Sabia, Juan Vicente Rafael Solerno, Pablo Luis |
author_sort |
Krick, Teresa Elena Genoveva |
title |
On intrinsic bounds in the Nullstellensatz |
title_short |
On intrinsic bounds in the Nullstellensatz |
title_full |
On intrinsic bounds in the Nullstellensatz |
title_fullStr |
On intrinsic bounds in the Nullstellensatz |
title_full_unstemmed |
On intrinsic bounds in the Nullstellensatz |
title_sort |
on intrinsic bounds in the nullstellensatz |
publishDate |
1997 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09381279_v8_n2_p125_Krick http://hdl.handle.net/20.500.12110/paper_09381279_v8_n2_p125_Krick |
work_keys_str_mv |
AT krickteresaelenagenoveva onintrinsicboundsinthenullstellensatz AT sabiajuanvicenterafael onintrinsicboundsinthenullstellensatz AT solernopabloluis onintrinsicboundsinthenullstellensatz |
_version_ |
1768541945192251392 |