On intrinsic bounds in the Nullstellensatz

Let k be a field and f1 , . . . , fs be non constant polynomials in k[X1 , . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence f1 , . . . , fs: the geometric degree of the system. With this notion we can show the following effective Nullstell...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Krick, Teresa Elena Genoveva, Sabia, Juan Vicente Rafael, Solerno, Pablo Luis
Publicado: 1997
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09381279_v8_n2_p125_Krick
http://hdl.handle.net/20.500.12110/paper_09381279_v8_n2_p125_Krick
Aporte de:
id paper:paper_09381279_v8_n2_p125_Krick
record_format dspace
spelling paper:paper_09381279_v8_n2_p125_Krick2023-06-08T15:53:23Z On intrinsic bounds in the Nullstellensatz Krick, Teresa Elena Genoveva Sabia, Juan Vicente Rafael Solerno, Pablo Luis Complete intersection polynomial ideals Effective Nullstellensatz Geometric degree Trace theory Functions Geometry Number theory Set theory Geometric degree Hilbert Nullstellensatz Trace theory Polynomials Let k be a field and f1 , . . . , fs be non constant polynomials in k[X1 , . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence f1 , . . . , fs: the geometric degree of the system. With this notion we can show the following effective Nullstellensatz: if δ denotes the geometric degree of the trivial system f1 , . . .. , fs and d:= maxjdeg(fj), then there exist polynomials p1 , . . . , ps ∈ k[X1 , . . . , Xn] such that 1 = ∑jpjfjand deg pjfj ≦ 3n2δd. Since the number δ is always bounded by (d + 1)n-1, one deduces a classical single exponential upper bound in terms of d and n, but in some cases our new bound improves the known ones. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1997 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09381279_v8_n2_p125_Krick http://hdl.handle.net/20.500.12110/paper_09381279_v8_n2_p125_Krick
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Complete intersection polynomial ideals
Effective Nullstellensatz
Geometric degree
Trace theory
Functions
Geometry
Number theory
Set theory
Geometric degree
Hilbert Nullstellensatz
Trace theory
Polynomials
spellingShingle Complete intersection polynomial ideals
Effective Nullstellensatz
Geometric degree
Trace theory
Functions
Geometry
Number theory
Set theory
Geometric degree
Hilbert Nullstellensatz
Trace theory
Polynomials
Krick, Teresa Elena Genoveva
Sabia, Juan Vicente Rafael
Solerno, Pablo Luis
On intrinsic bounds in the Nullstellensatz
topic_facet Complete intersection polynomial ideals
Effective Nullstellensatz
Geometric degree
Trace theory
Functions
Geometry
Number theory
Set theory
Geometric degree
Hilbert Nullstellensatz
Trace theory
Polynomials
description Let k be a field and f1 , . . . , fs be non constant polynomials in k[X1 , . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence f1 , . . . , fs: the geometric degree of the system. With this notion we can show the following effective Nullstellensatz: if δ denotes the geometric degree of the trivial system f1 , . . .. , fs and d:= maxjdeg(fj), then there exist polynomials p1 , . . . , ps ∈ k[X1 , . . . , Xn] such that 1 = ∑jpjfjand deg pjfj ≦ 3n2δd. Since the number δ is always bounded by (d + 1)n-1, one deduces a classical single exponential upper bound in terms of d and n, but in some cases our new bound improves the known ones.
author Krick, Teresa Elena Genoveva
Sabia, Juan Vicente Rafael
Solerno, Pablo Luis
author_facet Krick, Teresa Elena Genoveva
Sabia, Juan Vicente Rafael
Solerno, Pablo Luis
author_sort Krick, Teresa Elena Genoveva
title On intrinsic bounds in the Nullstellensatz
title_short On intrinsic bounds in the Nullstellensatz
title_full On intrinsic bounds in the Nullstellensatz
title_fullStr On intrinsic bounds in the Nullstellensatz
title_full_unstemmed On intrinsic bounds in the Nullstellensatz
title_sort on intrinsic bounds in the nullstellensatz
publishDate 1997
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09381279_v8_n2_p125_Krick
http://hdl.handle.net/20.500.12110/paper_09381279_v8_n2_p125_Krick
work_keys_str_mv AT krickteresaelenagenoveva onintrinsicboundsinthenullstellensatz
AT sabiajuanvicenterafael onintrinsicboundsinthenullstellensatz
AT solernopabloluis onintrinsicboundsinthenullstellensatz
_version_ 1768541945192251392