On intrinsic bounds in the Nullstellensatz
Let k be a field and f1 , . . . , fs be non constant polynomials in k[X1 , . . . , Xn] which generate the trivial ideal. In this paper we define an invariant associated to the sequence f1 , . . . , fs: the geometric degree of the system. With this notion we can show the following effective Nullstell...
Guardado en:
Autores principales: | Krick, Teresa Elena Genoveva, Sabia, Juan Vicente Rafael, Solerno, Pablo Luis |
---|---|
Publicado: |
1997
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09381279_v8_n2_p125_Krick http://hdl.handle.net/20.500.12110/paper_09381279_v8_n2_p125_Krick |
Aporte de: |
Ejemplares similares
-
On intrinsic bounds in the Nullstellensatz
por: Krick, T., et al. -
Bounds for traces in complete intersections and degrees in the Nullstellensatz
por: Sabia, J., et al. -
Bounds for traces in complete intersections and degrees in the Nullstellensatz
por: Sabia, Juan Vicente Rafael, et al.
Publicado: (1995) -
A Sparse Effective Nullstellensatz : Notas de Matemática, 62
por: Sombra, Martín
Publicado: (1997) -
On the intrinsic complexity of the arithmetic Nullstellensatz
por: Hägele, K., et al.
Publicado: (2000)