Stability results for the N-dimensional Schiffer conjecture via a perturbation method
Given a eigenvalue μ2 0m of -Δ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C0,1-domains, depending on μ0m, such that if u is a no trivial solution to the following problem Δu + μu = 0 in Ω, u = 0 on ∂Ω, and ∫∂Ω∂nu = 0, with Ω ∈ D, and μ = μ20 m +o(1...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2014
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09442669_v50_n1-2_p305_Canuto http://hdl.handle.net/20.500.12110/paper_09442669_v50_n1-2_p305_Canuto |
Aporte de: |
id |
paper:paper_09442669_v50_n1-2_p305_Canuto |
---|---|
record_format |
dspace |
spelling |
paper:paper_09442669_v50_n1-2_p305_Canuto2023-06-08T15:53:47Z Stability results for the N-dimensional Schiffer conjecture via a perturbation method Canuto, Bruno Given a eigenvalue μ2 0m of -Δ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C0,1-domains, depending on μ0m, such that if u is a no trivial solution to the following problem Δu + μu = 0 in Ω, u = 0 on ∂Ω, and ∫∂Ω∂nu = 0, with Ω ∈ D, and μ = μ20 m +o(1), then μ is a ball. Here μ is a eigenvalue of -Δ in Ω, with Neumann boundary conditions. © 2013 Springer-Verlag Berlin Heidelberg. Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2014 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09442669_v50_n1-2_p305_Canuto http://hdl.handle.net/20.500.12110/paper_09442669_v50_n1-2_p305_Canuto |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
Given a eigenvalue μ2 0m of -Δ in the unit ball B1, with Neumann boundary conditions, we prove that there exists a class D of C0,1-domains, depending on μ0m, such that if u is a no trivial solution to the following problem Δu + μu = 0 in Ω, u = 0 on ∂Ω, and ∫∂Ω∂nu = 0, with Ω ∈ D, and μ = μ20 m +o(1), then μ is a ball. Here μ is a eigenvalue of -Δ in Ω, with Neumann boundary conditions. © 2013 Springer-Verlag Berlin Heidelberg. |
author |
Canuto, Bruno |
spellingShingle |
Canuto, Bruno Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
author_facet |
Canuto, Bruno |
author_sort |
Canuto, Bruno |
title |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_short |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_full |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_fullStr |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_full_unstemmed |
Stability results for the N-dimensional Schiffer conjecture via a perturbation method |
title_sort |
stability results for the n-dimensional schiffer conjecture via a perturbation method |
publishDate |
2014 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09442669_v50_n1-2_p305_Canuto http://hdl.handle.net/20.500.12110/paper_09442669_v50_n1-2_p305_Canuto |
work_keys_str_mv |
AT canutobruno stabilityresultsforthendimensionalschifferconjectureviaaperturbationmethod |
_version_ |
1768541661285056512 |