Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method

Given a eigenvalue {Mathematical expression} of {Mathematical expression} in the unit ball {Mathematical expression}, with Neumann boundary conditions, we prove that there exists a class {Mathematical expression} of {Mathematical expression}-domains, depending on {Mathematical expression}, such that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Canuto, Bruno
Publicado: 2013
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09442669_v_n_p1_Canuto
http://hdl.handle.net/20.500.12110/paper_09442669_v_n_p1_Canuto
Aporte de:
id paper:paper_09442669_v_n_p1_Canuto
record_format dspace
spelling paper:paper_09442669_v_n_p1_Canuto2023-06-08T15:53:48Z Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method Canuto, Bruno Mathematics Subject Classification: 35N05 Given a eigenvalue {Mathematical expression} of {Mathematical expression} in the unit ball {Mathematical expression}, with Neumann boundary conditions, we prove that there exists a class {Mathematical expression} of {Mathematical expression}-domains, depending on {Mathematical expression}, such that if {Mathematical expression} is a no trivial solution to the following problem {Mathematical expression} in {Mathematical expression} on {Mathematical expression}, and {Mathematical expression}, with {Mathematical expression}, and {Mathematical expression}, then {Mathematical expression} is a ball. Here {Mathematical expression} is a eigenvalue of {Mathematical expression} in {Mathematical expression}, with Neumann boundary conditions. © 2013 Springer-Verlag Berlin Heidelberg. Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2013 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09442669_v_n_p1_Canuto http://hdl.handle.net/20.500.12110/paper_09442669_v_n_p1_Canuto
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Mathematics Subject Classification: 35N05
spellingShingle Mathematics Subject Classification: 35N05
Canuto, Bruno
Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method
topic_facet Mathematics Subject Classification: 35N05
description Given a eigenvalue {Mathematical expression} of {Mathematical expression} in the unit ball {Mathematical expression}, with Neumann boundary conditions, we prove that there exists a class {Mathematical expression} of {Mathematical expression}-domains, depending on {Mathematical expression}, such that if {Mathematical expression} is a no trivial solution to the following problem {Mathematical expression} in {Mathematical expression} on {Mathematical expression}, and {Mathematical expression}, with {Mathematical expression}, and {Mathematical expression}, then {Mathematical expression} is a ball. Here {Mathematical expression} is a eigenvalue of {Mathematical expression} in {Mathematical expression}, with Neumann boundary conditions. © 2013 Springer-Verlag Berlin Heidelberg.
author Canuto, Bruno
author_facet Canuto, Bruno
author_sort Canuto, Bruno
title Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method
title_short Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method
title_full Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method
title_fullStr Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method
title_full_unstemmed Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method
title_sort stability results for the {mathematical expression}-dimensional schiffer conjecture via a perturbation method
publishDate 2013
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09442669_v_n_p1_Canuto
http://hdl.handle.net/20.500.12110/paper_09442669_v_n_p1_Canuto
work_keys_str_mv AT canutobruno stabilityresultsforthemathematicalexpressiondimensionalschifferconjectureviaaperturbationmethod
_version_ 1768543236917297152