Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method
Given a eigenvalue {Mathematical expression} of {Mathematical expression} in the unit ball {Mathematical expression}, with Neumann boundary conditions, we prove that there exists a class {Mathematical expression} of {Mathematical expression}-domains, depending on {Mathematical expression}, such that...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09442669_v_n_p1_Canuto http://hdl.handle.net/20.500.12110/paper_09442669_v_n_p1_Canuto |
Aporte de: |
id |
paper:paper_09442669_v_n_p1_Canuto |
---|---|
record_format |
dspace |
spelling |
paper:paper_09442669_v_n_p1_Canuto2023-06-08T15:53:48Z Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method Canuto, Bruno Mathematics Subject Classification: 35N05 Given a eigenvalue {Mathematical expression} of {Mathematical expression} in the unit ball {Mathematical expression}, with Neumann boundary conditions, we prove that there exists a class {Mathematical expression} of {Mathematical expression}-domains, depending on {Mathematical expression}, such that if {Mathematical expression} is a no trivial solution to the following problem {Mathematical expression} in {Mathematical expression} on {Mathematical expression}, and {Mathematical expression}, with {Mathematical expression}, and {Mathematical expression}, then {Mathematical expression} is a ball. Here {Mathematical expression} is a eigenvalue of {Mathematical expression} in {Mathematical expression}, with Neumann boundary conditions. © 2013 Springer-Verlag Berlin Heidelberg. Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2013 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09442669_v_n_p1_Canuto http://hdl.handle.net/20.500.12110/paper_09442669_v_n_p1_Canuto |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Mathematics Subject Classification: 35N05 |
spellingShingle |
Mathematics Subject Classification: 35N05 Canuto, Bruno Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method |
topic_facet |
Mathematics Subject Classification: 35N05 |
description |
Given a eigenvalue {Mathematical expression} of {Mathematical expression} in the unit ball {Mathematical expression}, with Neumann boundary conditions, we prove that there exists a class {Mathematical expression} of {Mathematical expression}-domains, depending on {Mathematical expression}, such that if {Mathematical expression} is a no trivial solution to the following problem {Mathematical expression} in {Mathematical expression} on {Mathematical expression}, and {Mathematical expression}, with {Mathematical expression}, and {Mathematical expression}, then {Mathematical expression} is a ball. Here {Mathematical expression} is a eigenvalue of {Mathematical expression} in {Mathematical expression}, with Neumann boundary conditions. © 2013 Springer-Verlag Berlin Heidelberg. |
author |
Canuto, Bruno |
author_facet |
Canuto, Bruno |
author_sort |
Canuto, Bruno |
title |
Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method |
title_short |
Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method |
title_full |
Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method |
title_fullStr |
Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method |
title_full_unstemmed |
Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method |
title_sort |
stability results for the {mathematical expression}-dimensional schiffer conjecture via a perturbation method |
publishDate |
2013 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09442669_v_n_p1_Canuto http://hdl.handle.net/20.500.12110/paper_09442669_v_n_p1_Canuto |
work_keys_str_mv |
AT canutobruno stabilityresultsforthemathematicalexpressiondimensionalschifferconjectureviaaperturbationmethod |
_version_ |
1768543236917297152 |