Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method

Given a eigenvalue {Mathematical expression} of {Mathematical expression} in the unit ball {Mathematical expression}, with Neumann boundary conditions, we prove that there exists a class {Mathematical expression} of {Mathematical expression}-domains, depending on {Mathematical expression}, such that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Canuto, Bruno
Publicado: 2013
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09442669_v_n_p1_Canuto
http://hdl.handle.net/20.500.12110/paper_09442669_v_n_p1_Canuto
Aporte de:
Descripción
Sumario:Given a eigenvalue {Mathematical expression} of {Mathematical expression} in the unit ball {Mathematical expression}, with Neumann boundary conditions, we prove that there exists a class {Mathematical expression} of {Mathematical expression}-domains, depending on {Mathematical expression}, such that if {Mathematical expression} is a no trivial solution to the following problem {Mathematical expression} in {Mathematical expression} on {Mathematical expression}, and {Mathematical expression}, with {Mathematical expression}, and {Mathematical expression}, then {Mathematical expression} is a ball. Here {Mathematical expression} is a eigenvalue of {Mathematical expression} in {Mathematical expression}, with Neumann boundary conditions. © 2013 Springer-Verlag Berlin Heidelberg.