Computing central values of twisted l-series: The case of composite levels

We describe a general method to compute weight- 3 2 modular forms “associated” with a given weight-2 modular form f of level N, and relate its Fourier coefficients to central values of quadratic twists (real and imaginary) of L(f, s). We will focus on examples for levels N = 27, N = 15, and N = 75....

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2008
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10586458_v17_n4_p459_Pacetti
http://hdl.handle.net/20.500.12110/paper_10586458_v17_n4_p459_Pacetti
Aporte de:
id paper:paper_10586458_v17_n4_p459_Pacetti
record_format dspace
spelling paper:paper_10586458_v17_n4_p459_Pacetti2025-07-30T18:39:17Z Computing central values of twisted l-series: The case of composite levels L-series Quadratic twists Shimura correspondence We describe a general method to compute weight- 3 2 modular forms “associated” with a given weight-2 modular form f of level N, and relate its Fourier coefficients to central values of quadratic twists (real and imaginary) of L(f, s). We will focus on examples for levels N = 27, N = 15, and N = 75. © A K Peters, Ltd. 2008 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10586458_v17_n4_p459_Pacetti http://hdl.handle.net/20.500.12110/paper_10586458_v17_n4_p459_Pacetti
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic L-series
Quadratic twists
Shimura correspondence
spellingShingle L-series
Quadratic twists
Shimura correspondence
Computing central values of twisted l-series: The case of composite levels
topic_facet L-series
Quadratic twists
Shimura correspondence
description We describe a general method to compute weight- 3 2 modular forms “associated” with a given weight-2 modular form f of level N, and relate its Fourier coefficients to central values of quadratic twists (real and imaginary) of L(f, s). We will focus on examples for levels N = 27, N = 15, and N = 75. © A K Peters, Ltd.
title Computing central values of twisted l-series: The case of composite levels
title_short Computing central values of twisted l-series: The case of composite levels
title_full Computing central values of twisted l-series: The case of composite levels
title_fullStr Computing central values of twisted l-series: The case of composite levels
title_full_unstemmed Computing central values of twisted l-series: The case of composite levels
title_sort computing central values of twisted l-series: the case of composite levels
publishDate 2008
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10586458_v17_n4_p459_Pacetti
http://hdl.handle.net/20.500.12110/paper_10586458_v17_n4_p459_Pacetti
_version_ 1840322717136453632