An H-system for a revolution surface without boundary

We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a) = L/√2, where N:script A⊂ℝ+→ℝ is a function depend...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amster, Pablo Gustavo, De Napoli, Pablo Luis, Mariani, María Cristina
Publicado: 2006
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10853375_v2006_n_p_Amster
http://hdl.handle.net/20.500.12110/paper_10853375_v2006_n_p_Amster
Aporte de:
id paper:paper_10853375_v2006_n_p_Amster
record_format dspace
spelling paper:paper_10853375_v2006_n_p_Amster2023-06-08T16:06:06Z An H-system for a revolution surface without boundary Amster, Pablo Gustavo De Napoli, Pablo Luis Mariani, María Cristina We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a) = L/√2, where N:script A⊂ℝ+→ℝ is a function depending on H. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed H. Copyright © 2006 P. Amster et al. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:De Nápoli, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2006 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10853375_v2006_n_p_Amster http://hdl.handle.net/20.500.12110/paper_10853375_v2006_n_p_Amster
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a) = L/√2, where N:script A⊂ℝ+→ℝ is a function depending on H. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed H. Copyright © 2006 P. Amster et al.
author Amster, Pablo Gustavo
De Napoli, Pablo Luis
Mariani, María Cristina
spellingShingle Amster, Pablo Gustavo
De Napoli, Pablo Luis
Mariani, María Cristina
An H-system for a revolution surface without boundary
author_facet Amster, Pablo Gustavo
De Napoli, Pablo Luis
Mariani, María Cristina
author_sort Amster, Pablo Gustavo
title An H-system for a revolution surface without boundary
title_short An H-system for a revolution surface without boundary
title_full An H-system for a revolution surface without boundary
title_fullStr An H-system for a revolution surface without boundary
title_full_unstemmed An H-system for a revolution surface without boundary
title_sort h-system for a revolution surface without boundary
publishDate 2006
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10853375_v2006_n_p_Amster
http://hdl.handle.net/20.500.12110/paper_10853375_v2006_n_p_Amster
work_keys_str_mv AT amsterpablogustavo anhsystemforarevolutionsurfacewithoutboundary
AT denapolipabloluis anhsystemforarevolutionsurfacewithoutboundary
AT marianimariacristina anhsystemforarevolutionsurfacewithoutboundary
AT amsterpablogustavo hsystemforarevolutionsurfacewithoutboundary
AT denapolipabloluis hsystemforarevolutionsurfacewithoutboundary
AT marianimariacristina hsystemforarevolutionsurfacewithoutboundary
_version_ 1768546456035131392